Ventilation-Perfusion Distribution and Diffusion Limitations

  • G. Hedenstierna
  • L. Gunnarsson
Conference paper
Part of the Anaesthesiologie und Intensivmedizin Anaesthesiology and Intensive Care Medicine book series (A+I, volume 215)


Impaired arterial oxygenation may be caused by 1/ alveolar hypoventilation, 2/ right to left shunt, 3/ ventilation/perfusion (VA/Q) mismatch and 4/ diffusion limitation. It is obvious that reduced total Ventilation will decrease alveolar Ventilation and decrease the oxygen supply to the pulmonary capillary blood; at the same time the elimination of carbon dioxide is impeded. This cause of impaired gas exchange will not be dealt with more in this chapter. It will rather concentrate on the remaining three causes of impaired arterial oxygenation and their detection by using the multiple inert gas elimination technique [1).


Chronic Obstructive Pulmonary Disease Interstitial Lung Disease Pulmonary Blood Flow Adult Respiratory Distress Syndrome Restrictive Lung Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wagner PD, Salzman HA, West JB: Measurement of continuous distributions of ventilation-perfusion ratios: theory. J Appl Physiol 36: 588–599, 1974.PubMedGoogle Scholar
  2. 2.
    West JB, Dollery CT: Distribution of blood flow and ventilation-perfusion ratio in the lung, measured with radioactive CO.. J Appl Physiol 15: 405–410, 1960.PubMedGoogle Scholar
  3. 3.
    Hakim TS, Dean GW and Lisbona R.: Effect of body posture on spatial distribution ofGoogle Scholar
  4. pulmonary blood flow. J Appl Physiol 64: 1160–1170, 1988.Google Scholar
  5. 4.
    Orphanidou D, Hughes JMB, Myers MJ, Al-Suhali AR and Henderson B.: Tomography of regional Ventilation and perfusion using krypton81-m in normal subjects and asthmatic patients.Thorax 41: 542–551, 1986.Google Scholar
  6. 5.
    Hakim TS, Lisbona R and Dean GW.: Graviaty-independent inequality in pulmonary blood flow in humans. J Appl Physiol 62: 1114–1121, 1987.Google Scholar
  7. 6.
    Nicolaysen G, Shepard J, Onizuka M, Tanita T, Hattner RS and Staub NC.: No gravity-independent gradient of blood flow distribution in dog lung. J Appl Physiol 63: 540– 545, 1987.Google Scholar
  8. 7.
    Wagner PD, Hedenstierna G, Bylin G.: Ventilation-perfusion inequality in chronic asthma. Am Rev Respir Dis 136: 605–612, 1987.PubMedCrossRefGoogle Scholar
  9. 8.
    Gunnarson L, Tokics L, Gustavsson H, Hedenstierna G.: Atelectasis and gas exchange impairment during anaesthesia-correlation to age, body configuration and smoking. Anaesthesiology. Submitted. 1990.Google Scholar
  10. 9.
    Wagner PD, Dantzker DR, Iacovoni VE, Tomlin WC and West JB.: Ventilation-perfusion inequality in asymptomatic asthma. Am Rev Respir Dis 118: 511–524, 1978.PubMedGoogle Scholar
  11. 10.
    Wagner PD, Laravuso B, Uhl RR, West JB.: Continuous distriutions of ventilation-perfusion ratios in normal subjects breathing air and 100% O2. J Clin Invest 54: 54–68, 1974PubMedCrossRefGoogle Scholar
  12. 11.
    Bindslev L, Hedenstierna G, Santesson J, Gottlieb I and Carvallhas A.: Ventialtion-perfusion distribution during inhalation anaesthesia. Effects of spontaneous breathing, mechanical Ventilation and positive end-expiratory pressure. Acta Anaesthesiol Scand 25: 360–371, 1981.PubMedCrossRefGoogle Scholar
  13. 12.
    Hedenstierna G, Freyschuss U, Hedlin G, Thoren and Wallgren: Ventilation-pefusion relationships in children. Clin Physiol 2: 181–188, 1982.PubMedCrossRefGoogle Scholar
  14. 13.
    Dueck R, Wagner PD, West JB.: Effects of positive endexpiratory pressure on gas exchange in dogs with normal and edematous lungs. Anestesiology 47: 359–366, 1977.CrossRefGoogle Scholar
  15. 14.
    Rosenzweig DY, Hughes JMB, Glazier JB.: Effects of transpulmonary and vascular pressures on pulmonary blood volume in isolated lung. J Appl Physiol 28: 303–311, 1970.Google Scholar
  16. 15.
    Hedenstierna G, White FC, Mazzone R and Wagner PD.: Redistribution of pulmonary blood flow in the dog with positive end-expiratory pressure Ventilation. J Appl Physiol 46: 278–287, 1979.PubMedGoogle Scholar
  17. 16.
    West JB, Dollery CT and Naimark A.: Distribution of blood flow in isolated lung: Relation to vascular and alveolar pressures.: J Appl Physiol 19: 713–724, 1964.PubMedGoogle Scholar
  18. 17.
    Rehder K, Hatch DJ, Sessler A and Fowler WS.: The function of each lung of anesthetized and paralyzed man during mechanical Ventilation. Anesthesiology 37: 16–26, 1972.PubMedCrossRefGoogle Scholar
  19. 18.
    Rehder K, Sessler AD, Rodarte JR.: Regional intrapulmonary gas distribution in awake and anesthetized-paralyzed man. J Appl Physiol 42: 391–322, 1977.PubMedGoogle Scholar
  20. 19.
    Bindslev L, Santesson J, Hedenstierna G.: Distribution of inspired gas to each lung in anesthetized human subjects. Acta Anesthesiol Scand 25: 297–302, 1981.CrossRefGoogle Scholar
  21. 20.
    Don HF, Craig DB, Wahba WM,Couture JG.: The measurement of gas trapped in the lungs at functional residual capacity. Anesthesiology 36: 582–590, 1971CrossRefGoogle Scholar
  22. 21.
    Hedenstierna G, McCarthy, Bergstrom M.: Airway closure during mechanical Ventilation. Anesthesiology 44: 114–123, 1976.PubMedCrossRefGoogle Scholar
  23. 22.
    Brismar B, Hedenstierna G, Lundqvist H, Strandberg A, Svensson L, Tokics L.: Pulmonary densitites during anesthesia with muscular relaxation — A proposal of atelectasis.. Anesthesiology 62: 422–428, 1985.PubMedCrossRefGoogle Scholar
  24. 23.
    Prutow RJ, Dueck R, Davies NJH, Clausen J. Shunt development in young adult surgical patients due to inhalation anesthesia. Anesthesiology 57, no 3, A477, 1982. (abstract).CrossRefGoogle Scholar
  25. 24.
    Tokics L, Hedenstierna G, Strandberg A., Brismar B, Lundqvist H,: Lung collapse and gas exchange during general anesthesia effects of spontaneous breathing, muscle paralysis and positive end-expiratory pressure. Anesthesiol 66: 157–167, 1987.CrossRefGoogle Scholar
  26. 25.
    Rehder K, Knopp TJ, Sessler Ad, Didier EP.: Ventilation-perfusion relationships in young healthy awake and anaesthetized paralyzed man. J Appl Physiol 47: 745–753, 1979.PubMedGoogle Scholar
  27. 26.
    Wagner PD, Dantzker DR, Dueck R, Clausen JL, West JB: Ventilation-perfusion inequality in chronic obstructive pulmonary disease. J Clin Invest 59: 203–216, 1977.PubMedCrossRefGoogle Scholar
  28. 27.
    Bratel T, Hedenstierna G, Ripe E, Nyqvist O. The effect of a new calcium antagonist, Felodipine, on pulmonary hypertension and gas exchange in chronic obstructive lung disease. Eur J Respir Dis 67: 244–253, 1985.PubMedGoogle Scholar
  29. 28.
    Gunnarsson L, Tokics L, Lundqvist H, Brismar B, Strandberg A, Berg B, Hedenstierna G.: Chronic obstructive pulmonary disease and anaesthesia formation of atelectasis and gas exchange impairment. Eur Respir J. Accepted. 1989.Google Scholar
  30. 29.
    Manier G, Castaing Y, Guenard H.: Determinants of hypoxemia during the acute phase of pulmonary embolism in humans. Am Rev Respir Dis 132: 332–338, 1985.PubMedGoogle Scholar
  31. 30.
    Dantzker D, Lynch J, Weg JG.: Depression of cardiac output is a mechanism of shunt reduction in the therapy of acute respiratory failure. Chest 77: 636–642, 1980.PubMedCrossRefGoogle Scholar
  32. 31.
    Lemaire F, Gastine H, Regner B, Teisseire B, Rapin M.: Perfusion changes modify intrapulmonary shunting (Qs/Qt) in patients with adult respiratory distress Syndrome (ARDS).: Am Rev Respir Dis 117: 144, 1978. (abstract).Google Scholar
  33. 33.
    Duke K, Ali C, Fischer CJ, Wood LDH.: Increased cardiac Output dose not redistribute towards edematous lung lobes. Physiologist 23: 665, 1980.Google Scholar
  34. 34.
    Huttemeier PC, Ringsted C, Eliasen K, Mogensen T.: Ventilationperfusion inequality during endotoxin-induced pulmonary vasoconstriction in conscious sheep: mechanism of hypoxia. Clin Physiol 8: 351–358, 1988.PubMedCrossRefGoogle Scholar
  35. 35.
    Kelman GR.: Digital Computer sub–routine for the conversion of oxygen tension into Saturation. J Appl Physiol 21: 1375–1376, 1966.PubMedGoogle Scholar
  36. 36.
    Kelman GR.: Digital Computer procedure for theconversion of PCO2 content. Resp Physiol 3: 111–115, 1967.CrossRefGoogle Scholar
  37. 37.
    Piiper J and Schied P.: Blood gas equilibration in the lungs. In: Pulmonary gas exchange, vol I. Ed. West JB, 1980, New York, Academic Press, pp 138–140.Google Scholar
  38. 38.
    Wagner PD, Dantzker DR, Dereck R, de Polo JL, Wasserman K, West J.: Distribution of ventilation-perfusion ratios in patients with interstitial lung disease. Chest 69 (suppl 2): 256, 1976.PubMedCrossRefGoogle Scholar
  39. 39.
    Jernudd-Wilhelmsson Y, Hornblad Y and Hedenstierna G. Ventilation-perfusion relationships in interstitial lung disease. Eur J Respir Dis 68: 39–49, 1986.PubMedGoogle Scholar
  40. 40.
    Gale GW, Torre-Bueno JR, Monn RE, Saltzman HA and Wagner P.: Ventilation-perfusion inequality in normal humans during exercise at seas level and simulated altitude.J Appl Physiol, 58: 978–988, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • G. Hedenstierna
  • L. Gunnarsson

There are no affiliations available

Personalised recommendations