Skip to main content

Automated Cytogenetics in the Study of Mutagenesis and Cancer

  • Chapter
Advances in Mutagenesis Research

Part of the book series: Advances in Mutagenesis Research ((MUTAGENESIS,volume 2))

Abstract

After almost three decades of research and development, cytogenetics automation now provides practical and cost effective assistance in some subject areas, notably in clinical cytogenetics for the determination of the human constitutional karyotype, for example for ante-natal screening of genetic disorders (Piper and Lunds-teen 1987; Lundsteen and Martin 1989; Rutovitz 1989). While much of the knowledge and technology is relevant to aspects of mutagenesis, it was with few exceptions not developed with these studies in mind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggarwal RK, Fu KS (1977) A pattern classification system for the identification of irradiated chromosomes. IEEE Trans Biom Eng BME 24: 178–185

    Article  CAS  Google Scholar 

  • Bauchinger M (1984) Cytogenetic effects in human lymphocytes as a dosimetry system. In: Eisert WG, Mendelsohn ML (eds) Biological dosimetry. Springer, Berlin Heidelberg New York Tokyo, pp 15–24

    Chapter  Google Scholar 

  • Bille J, Scharfenberg H, Männer R (1983) Biological dosimetry by chromosome aberration scoring with parallel image processing with the Heidelberg POLYP polyprocessor system. Comput Biol Med 13: 49–79

    Article  PubMed  CAS  Google Scholar 

  • Callisen HH, Norman A, Pincu M (1984) Computer scoring of micronuclei in human lymphocytes. In: Eisert WG, Mendelsohn ML (eds) Biological dosimetry. Springer, Berlin Heidelberg New York Tokyo, pp 171–179

    Chapter  Google Scholar 

  • Callisen HH, Pincu M, Norman A (1986) Feasibility of automating the micronucleus assay. Anal Quant Cytol Histol 8: 219–223

    PubMed  CAS  Google Scholar 

  • Farrow ASJ, Green DK, Rutovitz D (1976) A cytogeneticist’s microscope and a proposed system for aberration scoring. In: Mendelsohn ML (ed) Automation of cytogenetics Asilomar workshop. Lawrence Livermore Lab Tech Rep CONF 751158: 68–71

    Google Scholar 

  • Fenech M, Morley AA (1985) Measurement of micronuclei in lymphocytes. Mutat Res 147: 29–36

    PubMed  CAS  Google Scholar 

  • Fenech M, Jarvis LR, Morley AA (1988) Preliminary studies on scoring micronuclei by computerised image analysis. Mutat Res 203: 33–38

    PubMed  CAS  Google Scholar 

  • Finnon P, Lloyd DC, Edwards AA (1986) An assessment of the metaphase finding capability of the Cytoscan 110. Mutat Res 164: 101–108

    PubMed  CAS  Google Scholar 

  • Graham J (1989) Resolution of composites in interactive karyotyping. In: Lundsteen C, Piper J (eds) Automation of cytogenetics. Springer, Berlin Heidelberg New York Tokyo, pp 191–203

    Google Scholar 

  • Ji L (1989a) Decomposition of overlapping chromosomes. In: Lundsteen C, Piper J (eds) Automation of cytogenetics. Springer, Berlin Heidelberg New York Tokyo, pp 177–190

    Google Scholar 

  • Ji L (1989b) Intelligent splitting in the chromosome domain. Pattern Recogn 22: 519–532

    Article  Google Scholar 

  • Le Beau MM, Albain KS, Larsen RA et al. (1986) Clinical and cytogenetic correlations in 63 patients with therapy-related myelodysplastic syndromes and acute nonlymphocytic leukemia: further evidence for characteristic abnormalities of chromosomes no. 5 and no. 7. J Clin Oncol 4: 325–345

    PubMed  Google Scholar 

  • Ledley RS (1964) High-speed automatic analysis of biomedical pictures. Science 146: 216–223

    Article  PubMed  CAS  Google Scholar 

  • Ledley RS, Ruddle FH, Wilson JB, Belson M, Albarran J (1968) The case of the touching and overlapping chromosomes. In: Cheng GC, Ledley RS, Pollock D, Rosenfeld A (eds) Pictorial pattern recognition. Thompson, Washington DC, pp 87–97

    Google Scholar 

  • Lloyd DC (1989a) Automated aberration scoring: the requirements of an end-user. In: Lundsteen C, Piper J (eds) Automation of cytogenetics. Springer, Berlin Heidelberg New York Tokyo, pp 9–17

    Google Scholar 

  • Lloyd DC (1989b) Advances in cytogenetics dosimetry. Proc REAC/TS Int Conf: The Medical Basis for Radiation Accident Preparedness: II. Clinical Experience and Follow-up since 1979, Cambridge, UK, October 1988. Elsevier, Amsterdam (in press)

    Google Scholar 

  • Lloyd DC, Purrott RJ (1981) Chromosome aberration analysis in radiological protection dosimetry. Radiat Prot Dosimetry 1: 19–28

    CAS  Google Scholar 

  • Lloyd D, Piper J, Rutovitz D, Shippey G (1987) A multiprocessing interval processor for automated cytogenetics. Appl Optics 26: 3356–3366

    Article  CAS  Google Scholar 

  • Lörch T, Bille J, Frieben M, Stephan G (1986) An automated biological dosimetry system. Proc SPIE Int Soc Opt Eng USA 596: 199–206

    Google Scholar 

  • Lörch T, Wittier C, Stephan G, Bille J (1989) An automated chromsome aberration scoring system. In: Lundsteen C, Piper J (eds) Automation of cytogenetics. Springer, Berlin Heidelberg New York Tokyo, pp 19–30

    Google Scholar 

  • Lundsteen C, Martin AO (1989) On the selection of systems for automated cytogenetics. Am J Med Genet 32: 72–80

    Article  PubMed  CAS  Google Scholar 

  • Lundsteen C, Piper J (eds) (1989) Automation of cytogenetics. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Martin AO, Shaunnessey M, Sabrin H et al. (1989) Evaluation and development of a system for automated preparation of blood specimens for cytogenetic analysis. In: Lundsteen C, Piper J (eds) Automation of cytogenetics. Springer, Berlin Heidelberg New York Tokyo, pp 149–173

    Google Scholar 

  • Perry P, Evans HJ (1975) Cytological detection of mutagen-carcinogen exposure by sister chromatid exchange. Nature (Lond) 258: 121–125

    Article  CAS  Google Scholar 

  • Perry P, Wolff S (1974) New Giemsa method for the differential staining of sister chromatids. Nature (Lond) 251: 156–158

    Article  CAS  Google Scholar 

  • Piper J (1982) Automatic detection of dicentric chromosomes. Proc 6th Int Conf Pattern Recogn, p 1197

    Google Scholar 

  • Piper J, Breckon G (1989) An automated system for karyotyping mouse chromosomes. Cytog Cell Genet 10: 111–115

    Article  Google Scholar 

  • Piper J, Lundsteen C (1987) Human chromosome analysis by machine. Trends Genet 3: 309–313

    Article  Google Scholar 

  • Piper J, Rutovitz D (1986) A parallel processor implementation of a chromosome analysis system. Pattern Recogn Lett 4: 397–404

    Article  Google Scholar 

  • Piper J, Rutovitz D, Ruttledge H, Granum E (1980) Automation of chromosome analysis. Signal Processing 2: 203–221

    Article  Google Scholar 

  • Piper J, Towers S, Gordon J, Ireland J, McDougall D (1988) Hypothesis combination and context sensitive classification for chromosome aberration scoring. In: Gelsema ES, Kanal LN (eds) Pattern recognition and artificial intelligence. Elsevier, Amsterdam, pp 449–460

    Google Scholar 

  • Romagna F (1988) Improved method of preparing bone marrow micronucleus assay slides. Mutat Res 206: 307–309

    Article  PubMed  CAS  Google Scholar 

  • Romagna F, Staniforth CD (1989) The automated bone marrow micronucleus test. Mutat Res 213: 91–104

    Article  PubMed  CAS  Google Scholar 

  • Rutovitz D (1989) Introduction. In: Lundsteen C, Piper J (eds) Automation of cytogenetics. Springer, Berlin Heidelberg New York Tokyo, pp 1–5

    Google Scholar 

  • Schmid W (1975) The micronucleus test. Mutat Res 31: 9–15

    PubMed  CAS  Google Scholar 

  • Shafer DA, Falek A, Swenson R, Oney D, Madden JJ (1980) Computer image analysis of sister chromatid exchanges. Am J Hum Genet 32: 88A

    Google Scholar 

  • Shafer DA, Mandelberg KI, Falek A (1986) Computer automation of metaphase finding, sister chromatid exchange, and chromosome damage analysis. Chem Mutagens 10: 357–380

    Article  Google Scholar 

  • Shippey G, Bayley R, Farrow S, Rutovitz D, Tucker J (1981) A fast interval processor. Pattern Recogn 14: 345–356

    Article  Google Scholar 

  • Shippey G, Carothers AD, Gordon J (1986) The operation and performance of an automatic metaphase finder based on the MRC Fast Interval Processor. J Histochem Cytochem 34: 1245–1252

    Article  PubMed  CAS  Google Scholar 

  • Stark M, Farrow S, McKie M, Rutovitz D (1989) Automatic high resolution digitization of metaphase cells for aberration scoring and karyotyping. In: Lundsteen C, Piper J (eds) Automation of cytogenetics. Springer, Berlin Heidelberg New York Tokyo, pp 31–43

    Google Scholar 

  • Vossepoel AM (1989) Separation of touching chromosomes. In: Lundsteen C, Piper J (eds) Automation of cytogenetics. Springer, Berlin Heidelberg New York Tokyo, pp 205–216

    Google Scholar 

  • Vrolijk J, Korthof G, Vletter G, Van der Geest CRG, Gerrese GW, Pearson PL (1989) An automated system for the culturing and harvesting of human chromosome specimens. In: Lundsteen C, Piper J (eds) Automation of cytogenetics. Springer, Berlin Heidelberg New York Tokyo, pp 135–148

    Google Scholar 

  • Wald N, Fatora SR, Herron JM, Preston K, Li CC, Davis L (1976) Status report on automated chromosome aberration detection. J Histochem Cytochem 24: 156–159

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Snellings J, Amory L, Suetens P, Oosterlinck A (1989) A polygonal approximation approach to model-based contour analysis in a chromosome segmentation system. In: Lundsteen C, Piper J (eds) Automation of cytogenetics. Springer, Berlin Heidelberg New York Tokyo, pp 217–229

    Google Scholar 

  • Zack GW, Spriet JA, Latt SA, Granlund GS, Young IT (1976) Automatic detection and localisation of sister chromatid exchanges. J Histochem Cytochem 24: 168–177

    Article  PubMed  CAS  Google Scholar 

  • Zack GW, Rogers WE, Latt SA (1977) Automatic measurement of sister chromatid exchange frequency. J Histochem Cytochem 25: 741–753

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Piper, J. (1990). Automated Cytogenetics in the Study of Mutagenesis and Cancer. In: Obe, G. (eds) Advances in Mutagenesis Research. Advances in Mutagenesis Research, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75599-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75599-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75601-6

  • Online ISBN: 978-3-642-75599-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics