Continental Configurations and Mantle Reference Frames over Geological Time

  • J. D. A. Piper
Conference paper

Abstract

The mapping of magnetic anomalies generated by ocean crustal spreading and the sampling of this crust by deep drilling have produced a detailed kinematic model for growth, destruction and relative movements of the outer quasi-rigid shell of the Earth (the Lithosphere) during the last part of geological times. The refinement of this model, and its extension into more ancient epoch is limited by the inexorable consumption of the ancient and dense oceanic lithosphere back into the asthenosphere at the subduction zones. Earth scientists are now actively extending the concepts of global mobility derived from the surface layer of the globe to the interior comprising the silicate mantle and iron-nickel core. Much interest centres on the nature of the mantle layer adjoining the core at the core-mantle boundary (CMB), the topography of this zone, and the implications of these parameters for the processes of heat release from the Earth’s interior. The key observations come from seismic tomography, material properties at high temperatures and pressures, and satellite geodesy. Collectively, this evidence has important consequences for our understanding of mantle convection and the mobility of the Earth’s interior, but it is limited by lack of the time dimension. The latter is provided by the study of the magnetic field incorporating geomagnetism (over historical times) and palaeomagnetism (over geological times) with which this review is largely concerned.

Keywords

Convection Cretaceous Jurassic Subduction Trench 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam NV, Benkova NP, Khramov AN, Cherevko TN (1975) Spherical harmonic analysis of the geomagnetic field of the Bruhnes epoch. Studia Geophys Geol 19: 141–149CrossRefGoogle Scholar
  2. Anderson DL (1982) Hot spots, polar wander, Mesozoic convection and the geoid. Nature (Lond) 297: 391–393CrossRefGoogle Scholar
  3. Andrews JA (1985) True polar wander: an analysis of Cenozoic and Mesozoic palaeomagnetic poles. J Geophys Res 89: 7737–7750CrossRefGoogle Scholar
  4. Bond GC, Christie-Blick N, Kominz MA (1984) Break-up of a supercontinent between 625 Ma and 555 Ma: new evidence and implications for continental histories. Earth Planet Sci Lett 70: 325–345CrossRefGoogle Scholar
  5. Castillo P (1988) The Dupal anomaly as a trace of the upwelling lower mantle. Nature (Lond) 336: 667–670CrossRefGoogle Scholar
  6. Chase CG (1979) Subduction, the geoid and lower mantle convection. Nature (Lond) 282: 464–468CrossRefGoogle Scholar
  7. Chase CG, Sprowl DR (1983) The modem geoid and ancient plate boundaries. Earth Planet Sci Lett 62: 314–320CrossRefGoogle Scholar
  8. Christensen U (1983) A numerical model of coupled subcontinental ocean convection. Tectonophysics 95: 1–23CrossRefGoogle Scholar
  9. Courtillot V (1986) A French program to study the Earth’s core. EOS (Trans Am Geophys Un) 67: 811–812Google Scholar
  10. Courtillot V, Besse J (1987) Magnetic field reversals, polar wander, and core-mantle coupling. Science 237: 1140–1147CrossRefGoogle Scholar
  11. Creer KM (1977) Geomagnetic secular variations during the last 25000 years: an interpretation of data obtained from rapidly deposited sediments. Geophys JR Astron Soc 48: 91–109Google Scholar
  12. Crough ST, Jurdy DM (1980) Subducted lithosphere, hot spots and the geoid. Earth Planet Sci Lett 48: 15–22CrossRefGoogle Scholar
  13. Crough ST, Morgan WJ, Hargraves RB (1980) Kimberlites: their relation to mantle hot spots. Earth Planet Sci Lett 50: 260–274CrossRefGoogle Scholar
  14. Davies DM, Solomon SC (1985) True polar wander and plate-driving forces. J Geophys Res 90:1837–841Google Scholar
  15. Duncan RA (1981) Hotspots in the southern oceans–an absolute frame of reference for motions of the Gondwana continents.Tectonophysics 74: 29–42Google Scholar
  16. Duncan RA, Petersen N, Hargraves RB (1972) Mantle plumes, movement of the European Plate and polar wandering. Nature (Lond) 239: 82–86CrossRefGoogle Scholar
  17. Dupré B, Allègre CJ (1983) Pb-Sr isotope variations in Indian Ocean basalts and mixing phenomena. Nature (Lond) 303: 142–146CrossRefGoogle Scholar
  18. Dziewonski AM (1984) Mapping the lower mantle by determination of lateral heterogeneity in P velocity up to degree and order 6. J Geophys Res 89: 5929–5952CrossRefGoogle Scholar
  19. Evans ME (1976) Test of the dipolar nature of the geomagnetic field throughout Phanerozoic time. Nature (Lond) 262: 676–677CrossRefGoogle Scholar
  20. Fleck RJ, Greenwood WR, Hadley DG, Anderson RE, Schmidt DL (1980) Age and evolution of the southern part of the Arabian Shield. In: Evolution and Mineralisation of the Arabian-Nubian Shield. Inst App Geol (Jeddah) Bull 3: 1–17Google Scholar
  21. Gire C (1985) Sur la variation séculaire du champ magnétique terrestre et les mouvements des couches externes du noyau fluide. Ph. D. thesis, Univ Paris V IIGoogle Scholar
  22. Goldreich P, Toomre A (1969) Some remarks on polar wandering. J Geophys Res 74: 2555–2569CrossRefGoogle Scholar
  23. Gough DI (1977) The geoid and single cell mantle convection. Earth Planet Sci Lett 34:360–364 Gubbins D (1987) Mechanism for geomagnetic polarity reversals. Nature (Lond) 326: 167–169Google Scholar
  24. Hager BH (1984) Subducted slabs and the geoid: constraints on mantle rheology and flow. J Geophys Res 89:6003–6015Google Scholar
  25. Hargraves RB, Duncan RA (1973) Does the mantle roll? Nature (Lond) 245: 361–363CrossRefGoogle Scholar
  26. Harrison CG, Lindh T (1982) Comparison between the hot spot and geomagnetic field reference frames. Nature (Loud) 300: 251–252CrossRefGoogle Scholar
  27. Hide R, Malin SRC (1970) Novel correlations between global features of Earth’s gravitational and magnetic fields. Nature (Loud) 225: 605–609CrossRefGoogle Scholar
  28. Irving E, McGlynn JC (1976) Proterozoic magnetostratigraphy and the tectonic evolution of Laurentia. Phil Trans Soc Lond A 280: 243–265Google Scholar
  29. Jurdy DM (1981) True polar wander. Tectonophysics 74: 1–16CrossRefGoogle Scholar
  30. Jurdy DM, Voo van der R (1974) A method for the separation of true polar wander and continental drift including results for the last 55m.y. J Geophys Res 79: 2945–2952CrossRefGoogle Scholar
  31. Jurdy DM, Voo van der R (1975) True polar wander since the early Cretaceous. Science 187: 1193–1196CrossRefGoogle Scholar
  32. Lay T (1989) Structure of the Core-Mantle transitional zone. Trans Am Geophys Un (EOS) 60 (4):49–58CrossRefGoogle Scholar
  33. Le Mouel JL, Madden TR, Decruix J, Courtillot V (1981) Decade fluctuations in geomagnetic westward drift and earth rotation. Nature (Lond) 290:763–65Google Scholar
  34. Le Mouel JL, Gire C, Hinderer J (1985) Sur l’excitation possible de l’oscillation chandlerienne par les mouvements à la surface du noyau. CR Acad Sci Paris 301: 27–38Google Scholar
  35. Le Pichon X, Gaulier JM (1986) Pangée une phénomène répétitif. CR Acad Sci Paris 303:737–741 Le Pichon X, Huchon P (1984) Geoid, Pangaea and convection. Earth Planet Sci Lett 67: 123–135Google Scholar
  36. Le Pichon X, Huchon P, Barrier E (1985) Pangaea, Geoid and the evolution of the western margin of the Pacific Ocean. In: Nasu N (ed) Formation of Active Ocean Margins. Terrapub, Tokyo, pp 3–45CrossRefGoogle Scholar
  37. Livermore RA, Vine FJ, Smith AG (1984) Plate motions and the geomagnetic field, II Jurassic to Tertiary. Geophys JR Astron Soc 79: 939–961Google Scholar
  38. Loper DE, McCartney K, Buzyna G (1988) A model of correlated episodicity in magnetic field reversals, climate and mass extinctions. J Geol 96: 1–15CrossRefGoogle Scholar
  39. Marton P (1986) Models for true polar wander from palaeomagnetism, geoid and hot spot studies. Tectonophysics 121: 331–344CrossRefGoogle Scholar
  40. McElhinny MW (1973) Palaeomagnetism and Plate Tectonics. Univ Press, Cambridge, 358 p McFadden PL, Merrill RT (1984) Lower mantle convection and geomagnetism. J Geophys Res 89: 3354–3362Google Scholar
  41. McKenzie DP (1972) Plate tectonics. In: Robertson E (ed) The Nature of the Solid Earth. McGraw-Hill, New York, pp 323–60Google Scholar
  42. Minster JB, Jordan TH (1978) Present day plate motions. J Geophys Res 83: 5331–5354CrossRefGoogle Scholar
  43. Molnar R, Tapponnier P (1977) Relation of the tectonics of eastern China to the India-Eurasian colli-sion: application of strike-line field theory to large scale continental tectonics. Geophysics 5: 212–216Google Scholar
  44. Morgan WJ (1972) Plate motions and deep mantle convection. Geol Soc Am Mem 132:7–22 Morgan WJ (1981) Hot spot tracks and the opening of the Atlantic and Indian Oceans. In: Emiliani C (ed) The Sea. Wiley, New York, pp 443–487Google Scholar
  45. Morgan WJ (1983) Hotspot tracts and the early rifting of the Atlantic. Tectonophysics 94:123–139 Morris WA, Schmidt PW, Roy JL (1979) A graphical approach to polar paths: palaeomagnetic cycles and global tectonics. Phys Earth Planet Int 19: 85–99Google Scholar
  46. Nairn AEM (ed) (1964) Problems in Palaeoclimatology. Interscience, London, 720 pGoogle Scholar
  47. Neev D, Hall JK (1982) A global system of spiralling geosutures. J Geophys Res 87: 10689–10708CrossRefGoogle Scholar
  48. Patchett PJ, Bylund G, Upton BGJ (1978) Palaeomagnetism and the Grenville orogeny, new Rb-Sr ages from dolerites in Canada and Greenland. Earth Planet Sci Lett 40: 349–364CrossRefGoogle Scholar
  49. Piper JDA (1975) Proterozoic supercontinent: time duration and the Grenville problem. Nature (Lond) 256: 519–520CrossRefGoogle Scholar
  50. Piper JDA (1976) Definition of pre-2000 m. y. apparent polar wander movements. Earth Planet Sci Lett 28: 470–478CrossRefGoogle Scholar
  51. Piper JDA (1978) Geological and geophysical evidence relating to continental growth and dynamics and the hydrosphere in Precambrian times: a review and analysis. In: Brosche P, Sündermann J (eds) Tidal Friction and the Earth’s Rotation I. Springer, Berlin Heidelberg New York, pp 197–241Google Scholar
  52. Piper JDA (1982) Movements of the continental crust and lithosphere-asthenosphere systems in Precambrian times. In: Brosche P, Sündermann J (eds) Tidal Friction and the Earth’s Rotation II. Springer, Berlin Heidelberg New York Tokyo, pp 253–315CrossRefGoogle Scholar
  53. Piper JDA (1987) Palaeomagnetism and the Continental Crust. Open Univ Press, Milton Keynes, 434 pGoogle Scholar
  54. Piper JDA (1987) Palaeomagnetism and the Continental Crust. Open Univ Press, Milton Keynes, 434 pGoogle Scholar
  55. Piper JDA, Grant S (1989) A palaeomagnetic test of the axial dipole assumption and implications for continental distribution through geological time. Phys Earth Planet IntGoogle Scholar
  56. Piper JDA, Briden JC, Lomax K (1973) Precambrian Africa and South America as a single continent. Nature (Lond) 245:244–248Google Scholar
  57. Rikitake T (1966) Electromagnetism and the Earth’s Interior. Devel Solid Earth Geophys 2, Elsevier, Amsterdam, 308 pGoogle Scholar
  58. Sears JW, Price RA (1978) The Siberian Connection: a case for Precambrian separation of the North American and Siberian cratons. Geology 6: 267–270CrossRefGoogle Scholar
  59. Tarling DH (1983) Palaeomagnetism, Principles and Applications in Geology, Geophysics and Archaeology. Chapman and Hall, London, pp 379Google Scholar
  60. Wilson RL (1970) Permanent aspects of the Earth’s non-dipole magnetic field over Upper Tertiary times. Geophys J R Astron Soc 19: 417–437Google Scholar
  61. Wilson RL (1971) Dipole-offset — the time average palaeomagnetic field over the past 25 million years. Geophys J R Astron Soc 22: 491–504Google Scholar
  62. Wilson RL, McElhinny MW (1974) Investigation of the large scale palaeomagnetic field over the past 25 million years. Eastward shift of the Icelandic spreading ridge. Geophys J R Astron Soc 39: 570–586Google Scholar
  63. Zhang Huimin, Zhang Wenghi (1985) Palaeomagnetic data, late Precambrian magnetostratigraphy and tectonic evolution of eastern China. Precambrian Res 29: 65–75CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • J. D. A. Piper
    • 1
  1. 1.Department of Earth SciencesUniversity of LiverpoolLiverpoolEngland

Personalised recommendations