Atmospheric Effects on the Earth’s Rotation

  • H. Volland


The atmosphere as the outer volatile region of the Earth is directly exposed to solar radiation. It is also connected to the solar wind via interaction with the geomagnetic field and the magnetospheric plasma. The atmospheric wind blowing over the rough surface can exchange angular momentum with the solid Earth. On a short-term scale (days to years), fluctuations of the angular momentum vector give rise to variations in the length of the day (LOD) and changes in the polar motion. Secular variations of the LOD may be partly due to a solar gravitational torque acting on the thermally excited semidiurnal density bulge on the ground. The frictional force between the magnetopause and the solar wind may be capable of braking the Earth’s rotation. In this paper, I estimate the various effects of atmospheric motions which may induce short-term and long-term changes in the Earth’s rotation.


Solar Wind Zonal Wind Polar Motion Magnetospheric Plasma Atmospheric Angular Momentum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akasofu SI (1981) Energy coupling between the solar wind and the magnetosphere. Space Sci Rev 28: 121CrossRefGoogle Scholar
  2. Banks PM (1979) Magnetospheric, ionospheric, and atmospheric interaction. In: Kennel CF et al. (eds) Solar systems plasma physics II. North Holland, Amsterdam, p 57Google Scholar
  3. Barnes RTH, Hide R, White AA, Wilson CA (1983) Atmospheric angular momentum fluctuations, length-of-the-day changes and polar motions. Proc R Soc Lond A387: 31CrossRefGoogle Scholar
  4. Belmont AD, Dart DG, Nastrom GD (1974) Periodic variations in stratospheric zonal wind from 20 to 65 km, at 80°N to 70°S. Quart J R Soc 100: 203Google Scholar
  5. Brosche P, Sündermann J (eds) (1978) Tidal friction and the Earth’s rotation. Springer, Berlin Heidelberg New YorkGoogle Scholar
  6. Chapman S, Lindzen RS (1970) Atmospheric tides. Reidel, DordrechtGoogle Scholar
  7. Eubanks TM, Steppe JA, Dickey JD, Callahan PS (1985) A spectral analysis of the earth’s angular momentum budget. J Geophys Res 90: 5385CrossRefGoogle Scholar
  8. Eubanks TM, Steppe JA, Dickey JD (1988) The atmospheric excitation of rapid polar motions. In: Babcock AK, Wilkins GA (eds) The Earth’s rotation and reference frames for geodesy and geodynamics. Kluwer, DordrechtGoogle Scholar
  9. Gold T, Soter S (1969) Atmospheric tides and the resonant rotation of Venus. Icarus 11: 356CrossRefGoogle Scholar
  10. Hide R (1984) Rotation of the atmospheres of the Earth and planets. Phil Trans R Soc Lond A3I3:107 Hill TW (1974) Origin of the plasma sheet. Rev Geophys Space Phys 12: 379Google Scholar
  11. Hill TW (1979) Inertial limit of corotation. J Geophys Res 84: 6554CrossRefGoogle Scholar
  12. Hines CO (1960) On the rotation of the polar ionospheric regions. J Geophys Res 65: 141CrossRefGoogle Scholar
  13. Hines CO (1974) Solar wind torque as an inhibitor of terrestrial rotation. J Geophys Res 79: 1543CrossRefGoogle Scholar
  14. Hirshberg J (1972) Upper limit of the torque of the solar wind on the Earth. J Geophys Res 77: 4855CrossRefGoogle Scholar
  15. Hoeksema JT, Wilcox JM, Scherrer PH (1983) The structure of the heliospheric current sheet: 1978–1982. J Geophys Res 88: 9910CrossRefGoogle Scholar
  16. Kundt W (1977) Spin and atmospheric tides of Venus. Astron Astrophys 60: 85Google Scholar
  17. Lambeck K (1980) The Earth’s variable rotation. Univ Press, CambridgeCrossRefGoogle Scholar
  18. Lorenz EN (1967) The nature and theory of the general circulation of the atmosphere. WMO, GenevaGoogle Scholar
  19. Mayr HG, Harris I (1983) Quasi-axisymmetric circulation and superrotation in planetary atmospheres. Astron Astrophys 121: 124Google Scholar
  20. McAvaney BJ, Bourke W, Puri K (1978) A global spectral model for simulation of the general circulation. J Atm Sci 35: 1557CrossRefGoogle Scholar
  21. Mestel L (1968) Magnetic breaking by a stellar wind. Astron Soc Lond 138: 359Google Scholar
  22. Moritz H, Müller II (1987) Earth rotation. Ungar, New YorkGoogle Scholar
  23. Naukojat B (1986) An update of the observed QBO of the stratospheric winds over the tropics. J Atm Sci 43: 1873CrossRefGoogle Scholar
  24. Newell RE, Kidson JW, Vincent DG, Boer GJ (1974) The “General Circulation” of the tropical atmosphere, Vol 1. MIT, Cambridge, MA, p 371Google Scholar
  25. Palmen E, Newton CW (1969) Atmospheric circulation systems. Academic Press, New YorkGoogle Scholar
  26. Pedlosky J (1979) Geophysical fluid dynamics Springer, Berlin Heidelberg New YorkGoogle Scholar
  27. Smith EJ (1979) Interplanetary magnetic fields. Rev Geophys Space Phys 17: 610CrossRefGoogle Scholar
  28. van Mieghem J (1973) Atmospheric energetics. Clarendon, OxfordGoogle Scholar
  29. Volland H (1984) Atmospheric electrodynamics. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  30. Volland H (1988) Atmospheric tidal and planetary waves. Kluver, DordrechtGoogle Scholar
  31. Volland H (1989a) Rossby-Haurwitz waves of zero zonal wavenumber. Contr Atm Phys 62: 77Google Scholar
  32. Volland H (1989b) On the seasonal components of polar motion. Geophys Res Lett 16: 303CrossRefGoogle Scholar
  33. Wahr JM (1988) The earth’s rotation. Ann Rev Earth Planet Sci 16: 231CrossRefGoogle Scholar
  34. Wahr JM, Oort AH (1984) Friction and mountain torque estimates from global atmospheric data. J Atm Sci 190Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • H. Volland
    • 1
  1. 1.Radioastronomisches InstitutUniversität BonnBonn 1Germany

Personalised recommendations