Skip to main content

The Generalized Total Least Squares Problem : Formulation, Algorithm and Properties

  • Conference paper
Book cover Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms

Part of the book series: NATO ASI Series ((NATO ASI F,volume 70))

Abstract

The Total Least Squares (TLS) method has been devised as a more global fitting technique than the ordinary least squares technique for solving overdetermined sets of linear equations AXB when errors occur in all data. If the errors on the measurements A and B are uncorrelated with zero mean and equal variance, TLS is able to compute a strongly consistent estimate of the true solution of the corresponding unperturbed set A 0 X = B 0. In this paper the TLS computations are generalized in order to maintain consistency of the solution in the following cases: first of all, some columns of A may be error-free and secondly, the errors on the remaining data may be correlated and not equally sized. Hereto, a numerically reliable Generalized TLS algorithm GTLS, based on the Generalized Singular Value Decomposition (GSVD), is developed. Additionally, the equivalence between the GTLS solution and alternative expressions of consistent estimators, described in literature, is proven. These relations allow to deduce the main statistical properties of the GTLS solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.J. Adcock. The Analyst 5 (1878), pp. 53–54.

    Article  Google Scholar 

  2. M. Aoki and P.C. Yue. IEEE Trans. Autom. Contr. 15 (1970), pp. 541–548.

    Article  MathSciNet  Google Scholar 

  3. L.M. Ewerbring and F.T. Luk, Canonical Correlations and Generalized SVD: Applications and New Algorithms. Techn. Rep. EE-CEG-88–11,Cornell Univ.,Ithaca, NY, July 1988 (to appear in J. Comput. Appl. Math.).

    Google Scholar 

  4. K.V. Fernando and H. Nicholson. IEE Proc. D 132 (1985), pp. 30–36.

    MATH  Google Scholar 

  5. P.P. Gallo. Commun. Statist.-Theor. Meth. 11 (1982), pp. 973–983.

    Article  MathSciNet  MATH  Google Scholar 

  6. L.J. Gleser. Ann. Statist. 9 (1981), pp. 24–44.

    Article  MathSciNet  MATH  Google Scholar 

  7. G.H. Golub, A. Hoffman and G.W Stewart. Lin.Alg. and its Appl. 88/89 (1987), pp. 317–327.

    Article  MathSciNet  Google Scholar 

  8. G.H. Golub and C.F. Van Loan. SIAM J. Numer. Anal. 17 (1980), pp. 883–893.

    Article  MathSciNet  MATH  Google Scholar 

  9. G.H. Golub and C.F. Van Loan, Matrix Computations. The Johns Hopkins Univ. Press, Baltimore, Maryland, 1983.

    MATH  Google Scholar 

  10. R.P. Guidorzi. Automatica 11 (1975), pp. 361–374.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Kelly. Ann. Statist. 12 (1984), pp. 87–100.

    Article  MATH  Google Scholar 

  12. U. Kotta. Proc. 5th IFAC Symp. on Identification and System Parameter Estimation, Darmstadt, FRG (1979), pp. 453–458.

    Google Scholar 

  13. J. Leuridan, D. De Vis, H. Van der Auweraer and F. Lembregts. Proc..nth Int. Modal Analysis Conf.,Los Angeles, Feb. 3–6 (1986), pp. 908918.

    Google Scholar 

  14. M.J. Levin. IEEE Trans. Autom. Contr. 9 (1964), pp. 229–235.

    Article  Google Scholar 

  15. F.T. Luk. J. Parallel Distrib. Comput. 2 (1985), pp. 250–260.

    Article  Google Scholar 

  16. C.C. Paige. SIAM J. Sci. Stat. Comput. 7 (1986), pp. 1126–1146.

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Pearson. Philos.Mag. 2 (1901), pp. 559–572.

    Google Scholar 

  18. P. Stoica and T. Söderström. Int. J. Control 35 (1982), pp. 449–457.

    Article  MATH  Google Scholar 

  19. S. Van Huffel, Analysis of the total least squares problem and its use in parameter estimation. Doct. Dissertation, Dept. Electr. Eng., K.U.Leuven, Belgium, June 1987.

    Google Scholar 

  20. S. Van Huffel and J. Vandewalle. J. Comput. and Applied Math. 21 (1988), pp. 333–341.

    Article  MATH  Google Scholar 

  21. S. Van Huffel and J. Vandewalle. SIAM J. Matrix Anal. Appl. 9 (1988), pp. 360–372.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Van Huffel and J. Vandewalle, Analysis and properties of the generalized total least squares problem AX ti B when some or all columns in A are subject to error. Int. Rep.,K.U.Leuven, Dept. of Electr. Eng., Mar. 1988 (submitted to SIAM J. Matrix Anal. Appl.).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Van Huffel, S. (1991). The Generalized Total Least Squares Problem : Formulation, Algorithm and Properties. In: Golub, G.H., Van Dooren, P. (eds) Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms. NATO ASI Series, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75536-1_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75536-1_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75538-5

  • Online ISBN: 978-3-642-75536-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics