Skip to main content

Neurotransmitter Receptors in Human Brain Diseases

  • Chapter
Cell Receptors

Part of the book series: Current Topics in Pathology ((CT PATHOLOGY,volume 83))

Abstract

Progress in our understanding of how the brain works is intimately related to the development of new techniques allowing for a more refined analysis of the brain machinery at the microscopic and molecular levels. The broad applications, in the last three decades, of biochemical techniques to the study of nervous tissues has greatly increased our understanding of the chemical makeup of the brain. Because of the high regional and cellular complexity of the brain and the low resolution of the classical biochemical approaches, histochemical methods have been devised that permit more accurate description of molecular events at a cellular or subcellular level. These new methods have taken advantage of the recent development of antibodies, radioactive markers, and molecular probes for brain antigens or nucleic acid sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agid Y, Javoy-Agid F (1985) Peptides and Parkinson’s disease. Trends Neurosci 1:30–35

    Google Scholar 

  • Agid Y, Javoy-Agid F, Ruberg M et al. (1986) Progressive supranuclear palsy: anatomical and biochemical considerations. Adv Neurol 45:191–206

    Google Scholar 

  • Anderton BH, Brion JP, Flament-Durand J et al. (1988) Structure and chemistry of Alzheimer neurofibrillary tangles. In: Ulrich J (ed) Interdisciplinary topics in Gerontology 25. Karger, Basel, pp 106–118

    Google Scholar 

  • Appel NM, Wessendorf MW, Eide RP (1987) Thyrotropin-releasing hormone in spinal cord: coexistence with serotonin and with substance P in fibers and terminals apposing identified preganglionic-sympathetic neurons. Brain Res 415:137–143

    PubMed  CAS  Google Scholar 

  • Arai H, Kobayashi K, Ichimiya Y (1984) A preliminary study of free amino acids in the postmortem temporal cortex from Alzheimer-type dementia patients. Neurobiol Aging 5:319–321

    PubMed  CAS  Google Scholar 

  • Armstrong DM, Bruce G, Hersch LB, Terry RD (1986) Choline acetyltransferase immunoreactivity in neuritic plaques of Alzheimer brain. Neurosci Lett 71:229–234

    PubMed  CAS  Google Scholar 

  • Aronin N, Cooper PE, Lorenz LJ, Bird ED, Sagar SM, Martin JB (1983) Somatostatin is increased in the basal ganglia in Huntington’s disease. Ann Neurol 13:519–526

    PubMed  CAS  Google Scholar 

  • Aubert I, Aranjo DM, Gauthier S, Quirion R (1989) Muscarinic receptor alterations in human cognitive disorders. Abstr. of the 4th International Symposium on Subtypes of Muscarinic Receptors. Trends Pharmacol Sci (in press)

    Google Scholar 

  • Bancher C, Lassmann H, Budka H, Grundke-Iqbal I, Iqbal K, Wiche G, Seitelberger F (1987) Neurofibrillary tangles in Alzheimer’s disease and progressive supranuclear palsy: antigenic similarities and differences. Acta Neuropathol 74:39–46

    PubMed  CAS  Google Scholar 

  • Baron JC, Mazière B, Loc’h C, Sgouropoulos P, Bonnet AM, Agid Y (1985) Progressive supranuclear palsy: loss of striatal dopamine receptors demonstrated in vivo by positron tomography. Lancet 1:1163–1164

    PubMed  CAS  Google Scholar 

  • Basbaum AI (1988) Distribution of glycine receptors’ immunoreactivity in the spinal cord of the rat: cytochemical evidence for a differential glycinergic control of lamina I and V nociceptive neurons. J Comp Neurol 278:330–336

    PubMed  CAS  Google Scholar 

  • Beai MF, Martin JB (1985) Reduced numbers of somatostatin receptors in the cerebral cortex in Alzheimer’s disease. Science 229:239–253

    Google Scholar 

  • Beai MF, Martin JB (1986) Neuropeptides and neurological disease. Ann Neurol 20:547–565

    Google Scholar 

  • Beai MF, Bird ED, Llanglais PJ, Martin JB (1984) Somatostatin is increased in the nucleus accum-bens in Huntington’s disease. Neurology 34:663–666

    Google Scholar 

  • Beai MF, Kowall NW, Mazurek F (1987) Neuropeptides in Alzheimer’s disease. In: Wurtman RJ, Corkin SH, Crowdon JH (eds) Alzheimer’s disease: advances in basic research and therapies. Center for Brain Sciences and Metabolism Charitable Trust, Cambridge, MA, pp 151–168

    Google Scholar 

  • Berciano J (1988) Olivopontocerebellar atrophy. In: Jankovic J, Tolosa E (eds) Parkinson’s disease and movement disorders. Urban and Schwarzenberg, Munich, pp 131–151

    Google Scholar 

  • Berger B, Escourolle R, Moyne MA (1976) Axones catecholaminergiques du cortex cérébral humain. Observation en histofluorescence, de biopsies cérébrales dont 2 cas de maladie d’Alzheimer. Revue Neurol (Paris) 132:183–194

    CAS  Google Scholar 

  • Berger B, Tassin JP, Rancurel G, Blanc G (1980) Catecholaminergic innervation of the human cerebral cortex in presenile and senile dementia. Histochemical and biochemical studies. In: Usdin E, Sourkes TL, Youdim MBH (eds) Enzymes and neurotransmitters in mental disease. Wiley, Chichester, pp 317–328

    Google Scholar 

  • Bernheimer H, Hornykiewicz O (1973) Brain amines in Huntington’s chorea. Adv Neurol 1:1872–1972

    Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O (1961) Verteilung des 5-hydroxytryptamins (Serotonin) im Gehirn des Menschen und sein Verhalten bei Patienten mit Parkinson-Syndrom. Klin Wochenschr 39:1056–1059

    PubMed  CAS  Google Scholar 

  • Bird ED, Iversen LL (1982) Human brain postmortem studies of neurotransmitter and related markers. In: Lajtha A (ed) Handbook of neurochemistry, vol 2. Plenum, London, pp 225–251

    Google Scholar 

  • Bogerts B, Häntsch J, Herzer M (1983) A morphometric study of the dopamine-containing cell groups in the mesencephalon of normals, Parkinson patients and schizophrenics. Biol Psychiatry 18:951–969

    PubMed  CAS  Google Scholar 

  • Bokobza B, Ruberg M, Scatton B, Javoy-Agid F, Agid Y (1984) 3H-spiperone binding, dopamine and HVA concentrations in Parkinson’s disease and supranuclear palsy. Eur J Pharmacol 99:167–175

    PubMed  CAS  Google Scholar 

  • Bondareff W, Mountjoy CQ, Roth M (1982) Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus coeruleus) in senile dementia. Neurology 32:164–168

    PubMed  CAS  Google Scholar 

  • Bonner TI, Buckley NJ, Young AC, Brann MR (1987) Identification of a family of muscarinic acetylcholine receptor genes. Science 237:527–532

    PubMed  CAS  Google Scholar 

  • Bonner TI, Young AC, Brann M, Buckley NJ (1988) Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron 1:403–410

    PubMed  CAS  Google Scholar 

  • Boulter J, Evans K, Goldman D, Martin G, Treco D, Heinemann S, Patrick Y (1986) Isolation of a cDNA clone coding for possible neural nicotinic acetylcholine receptor alpha-subunit. Nature 319:368–374

    PubMed  CAS  Google Scholar 

  • Bowen DM, Smith CB, White P, Davison AN (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99:459–496

    PubMed  CAS  Google Scholar 

  • Bruyn GW (1968) Huntington’s chorea: historical, clinical and laboratory synopsis. In: Vinken P, Bruyn GW (eds) Handbook of clinical neurology, vol 6. North Holland, Amsterdam, 298–378

    Google Scholar 

  • Buckley NJ, Bonner TI, Brann MR (1988) Localization of a family of muscarinic receptor mRNAs in rat brain. J Neurosci 8:4646–4652

    PubMed  CAS  Google Scholar 

  • Bunzow Y, van Tol HHM, Grandy DK et al. (1988) Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 336:783–787

    PubMed  CAS  Google Scholar 

  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model for parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by Af-methyl-4-phenyl-1,1,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 80:4546–4550

    PubMed  CAS  Google Scholar 

  • Cash R, Raisman R, Ploska A, Agid Y (1987) Dopamine D1 receptor and cyclic AMP-dependent phosphorylation in Parkinson’s disease. J Neurochem 49:1075–1083

    PubMed  CAS  Google Scholar 

  • Chan-Palay V (1988) Galanin hyperinnervates surviving neurons of the human basal nucleus of Meynert in dementia of Alzheimer’s and Parkinson’s disease: a hypothesis for the role of galanin in accentuating cholinergic dysfunction in dementia. J Comp Neurol 273:543–557

    PubMed  CAS  Google Scholar 

  • Chesselet MF, Graybiel AM (1986) Striatal neurons expressing somatostatin-like immunoreactivity: evidence for a peptidergic interneuronal system in the cat. Neuroscience 17:547–572

    PubMed  CAS  Google Scholar 

  • Clarke PBS, Schwartz RD, Paul SM, Pert CB, Pert A (1985) Nicotinic binding in rat brain: autoradiographic comparison of 3H-acetylcholine, 3H-nicotine and 125I-alpha-bungarotoxin. J Neurosci 5:1307–1315

    PubMed  CAS  Google Scholar 

  • Collerton D (1986) Cholinergic function and intellectual decline in Alzheimer’s disease. Neuroscience 19:1–28

    PubMed  CAS  Google Scholar 

  • Cortes R, Camps M, Gueye B, Probst A, Palacios JM (1989) Dopamine receptors in human brain: autoradiographic distribution of D1 and D2 sites in Parkinson syndrome of different etiology. Brain Res 483:30–38

    PubMed  CAS  Google Scholar 

  • Cross AJ, Crow TJ, Ferrier IN, Johnson JA, Bloom SR, Corsellis JAN (1984) Serotonin receptor changes in dementia of the Alzheimer type. J Neurochem 43:1574–1581

    PubMed  CAS  Google Scholar 

  • Cross AJ, Cross TJ, Ferrier IN, Johnson JA (1986) The selectivity of the reduction of serotonin S2 receptors in Alzheimer-type dementia. Neurobiol Aging 7:3–7

    PubMed  CAS  Google Scholar 

  • Curcio CA, Kemper T (1984) Nucleus raphe dorsalis in dementia of the Alzheimer type: neurofibrillary changes and neuronal packing density. J Neuropathol Exp Neurol 43:359–368

    PubMed  CAS  Google Scholar 

  • D’Amato RJ, Zweig RM, Whitehouse PJ et al. (1987) Aminergic systems in Alzheimer’s disease. Ann Neurol 22:229–236

    PubMed  Google Scholar 

  • Davies P, Maloney AJF (1976) Selective loss of central cholinergic neurons in Alzheimer senile dementia. Nature 288:279–280

    Google Scholar 

  • Davies P, Katzman R, Terry RD (1980) Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementia. Nature 288:279–280

    PubMed  CAS  Google Scholar 

  • Déjerine J, Thomas A (1900) L’atrophie olivo-pontocérébelleuse. Nouv Iconogr Salpêt 13:330–370

    Google Scholar 

  • De Souza EB, Whitehouse PJ, Kuhar MJ, Price DL, Vale WW (1986) Reciprocal changes in corticotropin-releasing factor (CRF)-like immunoreactivity and CRF receptors in cerebral cortex of Alzheimer’s disease. Nature 319:593–595

    PubMed  Google Scholar 

  • Deutch AY, Holliday J, Roth RH, Chan LLY, Hawrot E (1987) Immunohistochemical localization of a neuronal nicotinic acetylcholine receptor in mammalian brain. Proc Natl Acad Sci USA 84:8697–8701

    PubMed  CAS  Google Scholar 

  • Dietl MM, Probst A, Palacios JM (1986) Mapping of substance P receptors in the human brain: high densities in the substantia innominata and effect of senile dementia. Soc Neurosci Abstr 12:831

    Google Scholar 

  • Dietl MM, Sanchez M, Probst A, Palacios JM (1989) Substance P receptors in the human spinal cord: decrease in amyotrophic lateral sclerosis. Brain Res 483:39–49

    PubMed  CAS  Google Scholar 

  • Dixon RAF, Kobilka BK, Strader DJ et al. (1986) Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 321:75–79

    PubMed  CAS  Google Scholar 

  • Dohlman HG, Caron MG, Lefkowitz RJ (1987) A family of receptors coupled to guanine nucleotide regulatory proteins. Biochemistry 26:2657–2664

    PubMed  CAS  Google Scholar 

  • Dubois B, Ruberg M, Javoy-Agid F, Ploska A, Agid Y (1983) A subcortico-cortical cholinergic system is affected in Parkinson’s disease. Brain Res 288:213–218

    PubMed  CAS  Google Scholar 

  • Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin (3-Hydroxy-tryptamin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wochenschr 38:1236–1239

    PubMed  CAS  Google Scholar 

  • Engel WK, Siddique T, Nicoloff JT (1983) Effect on weakness and spasticity in amyotrophic lateral sclerosis of thyrotropin-releasing hormone. Lancet II:73–75

    Google Scholar 

  • Fargin A, Raymond JR, Lohse M J, Kobilka BK, Caron MG, Lefkowitz RJ (1988) The genomic clone G-21 which resembles a beta-adrenergic receptor sequence encodes the 5-HT 1A receptor. Nature 335:358–360

    PubMed  CAS  Google Scholar 

  • Ferrante RJ, Kowall NW, Beai MF, Richardson EP, Bird ED, Martin JB (1985) Selective sparing of a class of striatal neurons in Huntington’s disease. Science 230:561–563

    PubMed  CAS  Google Scholar 

  • Ferrante RJ, Beai MF, Kowall NW, Richardson EP, Martin JB (1987) Sparing of acetyl-cholinesterase-containing striatal neurons in Huntington’s disease. Brain Res 411:162–166

    PubMed  CAS  Google Scholar 

  • Filloux F, Wamsley JK, Dawson TN (1987) Dopamine D2 auto- and postsynaptic receptors in the nigrostriatal pathway system of the rat brain: localization by quantitative autoradiography with 3H-sulpiride. Eur J Pharmacol 138:61–68

    PubMed  CAS  Google Scholar 

  • Forno LS (1978) The locus coeruleus in Alzheimer’s disease. J Neuropathol Exp Neurol 37:614

    Google Scholar 

  • Frielle T, Collins S, Daniel KW, Caron MG, Lefkowitz RJ, Kobilka BK (1987) Cloning of the cDNA for the human beta-adrenergic receptors. Proc Natl Acad Sci USA 84:7920–7924

    PubMed  CAS  Google Scholar 

  • Galloway PG (1988) Antigenic characteristics of neurofibrillary tangles in progressive supranuclear palsy. Neurosci Lett 91:148–153

    PubMed  CAS  Google Scholar 

  • Geddes JW, Monaghan DT, Cotman CW, Lott IT, Kim RC, Chui HC (1985) Plasticity of hippocampal circuitry in Alzheimer’s disease. Science 230:1179–1181

    PubMed  CAS  Google Scholar 

  • Gillberg PG, Aquilonius SM (1985) Cholinergic, opioid and glycine receptor binding sites localized in human spinal cord by in vitro autoradiography. Acta Neurol Scand 72:299–306

    PubMed  CAS  Google Scholar 

  • Gillberg PG, Aquilonius SM, Eckernäs SA, Lundqvist A, Windblad B (1982) Choline acetyltransferase and substance P in the human spinal cord: changes in amyotrophic lateral sclerosis. Brain Res 250:394–397

    PubMed  CAS  Google Scholar 

  • Gillberg PG, Nordberg A, Aquilonius SM (1984) Muscarinic binding sites in small homogenates and in autoradiographic sections from spinal cord of rat and man. Brain Res 300:327–333

    PubMed  CAS  Google Scholar 

  • Golbe LI, Davis PH (1988) Progressive supranuclear palsy. Recent advances. In: Jankovic J, Tolosa E (eds) Parkinson’s disease and movement disorders. Urban and Schwarzenberg, Baltimore, pp 121–130

    Google Scholar 

  • Goldman D, Simmon D, Swanson LW, Patrick J, Heinemann S (1986) Mapping of brain areas expressing RNA homologous to two different acetylcholine receptor alpha-subunit cDNAs. Proc Natl Acad Sci USA 83:4076–4080

    PubMed  CAS  Google Scholar 

  • Goldman D, Deneris E, Luyten W, Kochhar A, Patrick J, Heinemann S (1987) Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system. Cell 48:965–973

    PubMed  CAS  Google Scholar 

  • Graybiel AM, Ragsdale CW Jr (1983) Biochemical anatomy of the striatum. In: Emson PC (ed) Chemical neuroanatomy. Raven, New York, 427–504

    Google Scholar 

  • Greenamyre JT, Penney JB, D’Amato CJ, Hicks SP, Shoulson I (1985) Alterations in l-glutamate binding in Alzheimer’s and Huntington’s disease. Science 227:1496–1499

    PubMed  CAS  Google Scholar 

  • Grenningloh G, Rienitz A, Schmitt B et al. (1987) The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328:215–220

    PubMed  CAS  Google Scholar 

  • Gross RA, Spehlmann R, Daniels JC (1978) Sleep disturbances in progressive supranuclear palsy. Electroencephalogr Clin Neurophysiol 45:16–25

    PubMed  CAS  Google Scholar 

  • Guttmann M, Seeman P, Reynolds GP, Riederer P, Jellinger K, Tourtellotte WW (1986) Dopamine D2 receptor density remains constant in treated Parkinson’s disease. Ann Neurol 19:487–492

    Google Scholar 

  • Hedreen JC, Struble RG, Whitehouse PJ, Price DL (1984) Topography of the magnocellular basal forebrain system in human brain. J Neuropath Exp Neurol 43:1–21

    PubMed  CAS  Google Scholar 

  • Hiley CR, Bird ED (1974) Decreased muscarinic receptor concentration in post-mortem brain in Huntington’s chorea. Brain Res 80:355–358

    PubMed  CAS  Google Scholar 

  • Hirsch EC, Graybiel AM, Duyckaerts, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci USA 84:5976–5980

    PubMed  CAS  Google Scholar 

  • Hoffman BJ, Mezey E (1989) Distribution of serotonin 5-HT 1C receptor mRNA in adult rat brain. FEBS Lett 247:453–462

    PubMed  CAS  Google Scholar 

  • Hoover DB, Hancock JC (1985) Effect of facial nerve transection on acetylcholinesterase, choline acetyltransferase and 3H-quinuclidinyl benzilate binding in rat facial nuclei. Neuroscience 15:481–487

    PubMed  CAS  Google Scholar 

  • Hornykiewicz O (1978) Historical aspects and frontiers of Parkinson’s disease research. Adv Exp Med Biol 90:1–20

    Google Scholar 

  • Jackson IMD, Adelman LS, Munsat TL, Forte S, Lechan RM (1986) Amyotrophic lateral sclerosis: thyrotropin-releasing hormone and histidyl proline diketopiperazine in the spinal cord and cerebrospinal fluid. Neurology 36:1218–1223

    PubMed  CAS  Google Scholar 

  • Javoy-Agid F, Agid Y (1980) Is the mesocortical dopaminergic system involved in Parkinson disease? Neurology 30:1326–1330

    PubMed  CAS  Google Scholar 

  • Javoy-Agid F, Ruberg M, Taquet H et al. (1982) Biochemical neuropathology and Parkinson disease. Advances in neurology: proceedings of the VII International Symposium on Parkinson disease. Raven, New York, pp 189–198

    Google Scholar 

  • Jellinger K, Riederer P, Tomonaga M (1980) Progressive supranuclear palsy: clinicopathological and biochemical studies. J Neural Transm 16 [Suppl]:111–128

    Google Scholar 

  • Johansson O, Hökfelt T, Pernow B (1981) Immunocytochemical support for three putative transmitters in one neuron: coexistence of 5-hydroxytryptamine, substance P and thyrotropin releasing hormone like immunoreactivity in medullary neurons projecting to the spinal cord. Neuroscience 6:1857–1881

    PubMed  CAS  Google Scholar 

  • Joyce JN, Lexow N, Bird E, Winokur A (1988) Organization of dopamine D1 and D2 receptors in human striatum: receptor autoradiographic studies in Huntington’s disease and schizophrenia. Synapse 2:546–557

    PubMed  CAS  Google Scholar 

  • Julius D, MacDermott AB, Axel R, Jessel T (1988) Molecular characterization of a functional cDNA encoding the serotonin lc receptor. Science 241:558–564

    PubMed  CAS  Google Scholar 

  • Kish SJ, Perry TL, Hornykiewicz O (1983) Increased GAB A receptor binding in dominantly inherited cerebellar ataxias. Brain Res 269:370–373

    PubMed  CAS  Google Scholar 

  • Kish SJ, Chang LJ, Mirchandani L, Shannak K, Hornykiewicz O (1985) Progressive supranuclear palsy: relationship between extrapryamidal disturbances, dementia and brain neurotransmitter markers. Ann Neurol 18:530–536

    PubMed  CAS  Google Scholar 

  • Kish SJ, Li PP, Robitaille Y, Currier R, Gilbert J, Schut L, Warsh JJ (1989) Cerebellar 3H-inositol-1,4,5-triphosphatase binding is markedly decreased in human olivopontocerebellar atrophy. Brain Res 489:373–376

    PubMed  CAS  Google Scholar 

  • Kobilka BK, Maysui H, Kobilka TS et al. (1987a) Cloning, sequencing and expression of the gene coding for the human platelet alpha-2 adrenergic receptor. Science 238:650–656

    PubMed  CAS  Google Scholar 

  • Kobilka BK, Dixon RAF, Frielle T et al. (1987b) cDNA for the human beta-2 adrenergic receptor: a protein with multiple membrane spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc Natl Acad Sci USA 84:46–50

    PubMed  CAS  Google Scholar 

  • Kobilka BK, Frielle T, Collins S et al. (1987c) An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature 329:75–79

    PubMed  CAS  Google Scholar 

  • Kowall NW, Ferrante RS, Martin JB (1987) Patterns of cell loss in Huntington’s disease. Trends Neurosci 10:24–29

    Google Scholar 

  • Lang W, Henke H (1983) Cholinergic receptor binding and autoradiography in brains of non-neurological and senile dementia of Alzheimer type patients. Brain Res 267:271–280

    PubMed  CAS  Google Scholar 

  • Lange H, Thorner G, Hopf A, Schroder KF (1976) Morphometric studies of the neuropathological changes in choreatic disease. J Neurol Sci 28:401–425

    PubMed  CAS  Google Scholar 

  • Lange HW (1981) Quantitative changes of telencephalon, diencephalon and mesencephalon in Huntington’s chorea, postencephalitic and idiopathic parkinsonism. Verh Anat Ges 75:923–925

    Google Scholar 

  • Lechan RM, Snapper SB, Jacobson S, Jackson IMD (1984) The distribution of thyrotropin-releasing hormone (TRH) in the rhesus monkey spinal cord. Peptides 5 [Suppl 1]:186–194

    Google Scholar 

  • Lee T, Seeman P, Rajput A, Farley JJ, Hornykiewicz O (1978) Receptor basis for dopmainergic supersensitivity in Parkinson’s disease. Nature 278:59–61

    Google Scholar 

  • Lentz TL, Chester J (1977) Localization of acetylcholine receptors in central synapses. J Cell Biol 75:258–267

    PubMed  CAS  Google Scholar 

  • Lindstrom JM (1986) Probing nicotinic acetylcholine receptors with monoclonal antibodies. Trends Neurosci 9:401–407

    CAS  Google Scholar 

  • Llorens-Cortes C, Javoy-Agid F, Taquet H, Schwarz JC (1984) Enkephalinergic markers in substantia nigra and caudate nucleus from Parkinsonian subjects. J Neurochem 43:874–877

    PubMed  CAS  Google Scholar 

  • Lolait S J, O’Caroll AM, Kusano K, Müller JM, Brownstein MJ, Mahan LC (1989) Cloning and expression of a novel rat GABA A receptor. FEBS Lett 246:145–148

    PubMed  CAS  Google Scholar 

  • Lübbert H, Hoffman BJ, Snutch TP et al. (1987) cDNA cloning of a serotonin 5-HT 1C receptor by electrophysiological assays of mRNA injected Xenopus oocytes. Proc Natl Acad Sci USA 84:4332–4336

    PubMed  Google Scholar 

  • Lynch G, Baudry M (1984) The biochemistry of memory: a new and specific hypothesis. Science 224:1057–1063

    PubMed  CAS  Google Scholar 

  • Mamalaki C, Stephenson FA, Barnard EA (1987) The GABA A benzodiazepine receptor is a heterotetramer of homologous alpha and beta subunits. EMBO J 6:561–565

    PubMed  CAS  Google Scholar 

  • Manaker S, Winokur A, Rhodes H, Rainbow TC (1985) Autoradiographic localization of thyrotropin-releasing hormone (THR) receptors in human spinal cord. Neurology 35:328–332

    PubMed  CAS  Google Scholar 

  • Manaker S, Caine SB, Winokur A (1988) Alterations in receptors for thyrotropin-releasing hormone, serotonin, and acetylcholine in amyotrophic lateral sclerosis. Neurology 38:1464–1474

    PubMed  CAS  Google Scholar 

  • Mann DMA, Yates PO, Marcyniuk B (1987) Dopaminergic neurotransmitter systems in Alzheimer’s disease and Down’s syndrome at middle age. J Neurol Neurosurg Psychiatry 50:341–344

    PubMed  CAS  Google Scholar 

  • Maragos WF, Greenamyre JT, Penney JB Jr, Young AB (1987) Glutamate dysfunction in Alzheimer’s disease. A hypothesis. Trends Neurosci 10:65–68

    CAS  Google Scholar 

  • Marshall PE, Landis D (1985) Huntington’s disease is accompanied by changes in the distribution of somatostatin containing neuronal processes. Brain Res 329:71–82

    PubMed  CAS  Google Scholar 

  • Mash DC, Flynn DD, Potter LT (1985) Loss of M2 muscarinic receptors in the cererbral cortex in Alzheimer’s disease and experimental cholinergic denervation. Science 228:1115–1117

    PubMed  CAS  Google Scholar 

  • Masu Y, Nakayama K, Tamaki H, Harada Y, Kuno M, Nakanishi S (1987) cDNA cloning of bovine substance K receptor through oocyte expression system. Nature 329:836–838

    PubMed  CAS  Google Scholar 

  • McGeer PL, Eccles Sir JC, McGeer EG (1987) Molecular neurobiology of the mammalian brain. Plenum, New York

    Google Scholar 

  • Mengod G, Palacios JM (1990) Molecular neuropathology: the study of transmitter receptor expression in human postmortem materials by in situ hybridization and receptor autoradiography. Neuropsychopharmacology

    Google Scholar 

  • Mengod G, Martinez-Mir MI, Vilaró MT, Palacios JM (1989) Localization of the mRNA for the dopamine D2 receptor in the rat brain by in situ hybridization histochemistry. Proc Natl Acad Sci USA 86:8560–8564

    PubMed  CAS  Google Scholar 

  • Mengod G, Nguyen H, Le H, Waeber C, Lübbert H, Palacios JM (1990) The distribution and cellular localization of the serotonin 1C receptor mRNA in the rodent brain examined by in situ hybridization histochemistry. Comparison with receptor binding distribution. Neuroscience 35:577–591

    PubMed  CAS  Google Scholar 

  • Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1984) Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Neuroscience 12:669–686

    PubMed  CAS  Google Scholar 

  • Mitsuma T, Nogimori T, Adachi K, Mukoyama M, Ando K (1984) Concentrations of immunore-active thyrotropin-releasing hormone in spinal cord of patients with amyotrophic lateral sclerosis. Am J Med Sci 287:34–36

    PubMed  CAS  Google Scholar 

  • Morley BJ, Kemp GE, Salvaterra P (1979) Alpha-bungarotoxin binding sites in the CNS. Life Sci 24:859–872

    PubMed  CAS  Google Scholar 

  • Myers RH, Martin JB (1982) Huntington’s disease. Semin Neurol 2:365–372

    Google Scholar 

  • Nemeroff CB, Youngblood WW, Manberg PJ, Prange AJ, Kizer JS (1983) Regional brain concentration of neuropeptides in Huntington’s chorea and schizophrenia. Science 221:972–975

    PubMed  CAS  Google Scholar 

  • Nghiêm HO, Cartaud J, Dubreuil C, Kordeli C, Buttin G, Changeux JP (1983) Production and characterization of a monoclonal antibody directed against the 43000-dalton VI polypeptide from torpedo marmorata electric organ. Proc Natl Acad Sci USA 80:6403–6407

    PubMed  Google Scholar 

  • Oppenheimer DR (1984) Diseases of the basal ganglia, cerebellum and motor neurons. In: Adam JH, Corsellis JAN, Duchen LW (eds) Greenfields neuropathology. Edward Arnold, London, pp 700–747

    Google Scholar 

  • Palacios JM (1982) Autoradiographic localization of muscarinic cholinergic receptors in the hippocampus of patients with senile dementia. Brain Res 23:173–175

    Google Scholar 

  • Palacios JM, Kuhar MJ (1981) Neurotensin receptors are located on dopamine-containing neurons in rat midbrain. Nature 294:273–285

    Google Scholar 

  • Palacios JM, Niehoff DL, Kuhar MJ (1981) Receptor autoradiography with tritium-sensitive film: potential for computerized densitometry. Neurosci Lett 24:111–116

    Google Scholar 

  • Palacios JM, Probst A, Cortés R (1986) Mapping receptors in the human brain. Trends Neurosci 9:284–289

    CAS  Google Scholar 

  • Palacios JM, Cortés R, Probst A, Dietl M (1987) Autoradiographic mapping of neurotransmitter receptors in normal and pathological human brain. In: Tucek S (ed) Synaptic transmitters and receptors. Academia, Prague, pp 71–79

    Google Scholar 

  • Palacios JM, Camps M, Cortés R., Probst A (1988a) Mapping dopamine receptors in the human brain. J Neural Transm 27:227–235

    CAS  Google Scholar 

  • Palacios JM, Cortés R, Dietl M, Probst A (1988b) Receptors in human brain disease: a use for receptor autoradiography in neuropathology. J Recept Res 8:509–520

    PubMed  CAS  Google Scholar 

  • Palacios JM, Mengod G, Savasta M (1989a) Mapping of receptor and transmitters expression in the human brain. In: Ottoson D (ed) Visualization of brain function. Macmillan, London

    Google Scholar 

  • Palacios JM, Mengod G, Vilaró MT, Wiederhold KH, Boddeke H, Alvarez FJ, Chinaglia G, Probst A (1989b) Cholinergic receptors in the rat and human brain. Microscopic visualization. Prog Brain Res

    Google Scholar 

  • Palmer AM, Wilcock GK, Esiri MM, Francis PT, Bowen DM (1987) Monoamine innervation of the frontal and temporal lobes in Alzheimer’s disease. Brain Res 401:231–238

    PubMed  CAS  Google Scholar 

  • Patten BM, Croft S (1984) Spinal cord substance P in amyotrophic lateral sclerosis. In: Clifford Rose F (ed) Research progress in motor neuron disease. Pitman, Bath, pp 283–289

    Google Scholar 

  • Penney JB, Young AB (1982) Quantitative autoradiography of neurotransmitter receptors in Huntington’s disease. Neurology 32:1391–1395

    PubMed  Google Scholar 

  • Penney JB, Young AB (1988) Huntington’s disease. In Jankovic F, Tolosa E (eds) Parkinson’s disease and movement disorders. Urban and Schwarzenberg, Baltimore, pp 167–178

    Google Scholar 

  • Penney JB, Young AB, Walker FO, Shoulson I (1984) Quantitative autoradiography of opiate receptors in Huntington’s disease. Neurology 34 [Suppl 1]:153

    Google Scholar 

  • Peralta EG, Ashkenazi A, Winslow JW, Smith DH, Ramachandran J, Capon DJ (1987) Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. EMBO J 6:3923–3929

    PubMed  CAS  Google Scholar 

  • Perret JL, Jouvet M (1980) Etude du sommeil dans la paralysie supranucléaire progressive. Electroencephalogr Clin Neurophysiol 49:323–329

    PubMed  CAS  Google Scholar 

  • Perry EK, Tomlinson BE, Blessed G, Bergmann K, Gibson PH, Perry RH (1978) Correlation of cholinergic abnormalities with senile plaques and mental testscores in senile dementia. Br Med J II:1427–1429

    Google Scholar 

  • Perry EK, Atack JR, Perry RH et al. (1984) Intralaminar neurochemical distributions in human midtemporal cortex: comparison between Alzheimer’s disease and the normal. J Neurochem 42:1402–1410

    PubMed  CAS  Google Scholar 

  • Perry TL, Kish S J, Hansen S, Currier RD (1981) Neurotransmitter amino acids in dominantly inherited cerebellar disorders. Neurology 31:237–242

    PubMed  CAS  Google Scholar 

  • Perry TL, Young VW, Bergeron C, Hansen S, Jones K (1987) Amino acids, glutathione and glutathione transferase activity in the brains of patients with Alzheimer’s disease. Ann Neurol 21:331–336

    PubMed  CAS  Google Scholar 

  • Petito CK, Hart MN, Porro RS, Earle KM (1973) Ultrastructural studies of olivopontocerebellar atrophy. J Neuropathol Exp Neurol 32:503–552

    PubMed  CAS  Google Scholar 

  • Pfeiffer F, Simler R, Greeningloh G, Betz H (1984) Monoclonal antibodies and peptide mapping reveal structural similarities between the subunits of the glycine receptors of rat spinal cord. Proc Natl Acad Sci USA 81:7224–7227

    PubMed  CAS  Google Scholar 

  • Pierot L, Desnas C, Blair J et al. (1988) Dl and D2 type dopamine receptors in patients with Parkinson’s disease and progressive supranuclear palsy. J Neurol Sci 86:291–306

    PubMed  CAS  Google Scholar 

  • Pimoule C, Schoemaker H, Reynolds GP, Langer SZ (1985) 3H-SCH 23 390 labeled Dl dopamine receptors are unchanged in schizophrenia and Parkinson’s disease. Eur J Pharmacol 114:235–237

    PubMed  CAS  Google Scholar 

  • Pollock NJ, Mirra SS, Binder LI, Hansen LA, Wood JG (1986) Filamentous aggregates in Pick’s disease, progressive supranuclear palsy and Alzheimer’s disease share antigenic determinants with microtubule-associated protein, tau. Lancet II:1211

    Google Scholar 

  • Pritchett DB, Bach AWJ, Wozny M, Talebo O, Di Toso R, Shih JC, Seeburg PH (1988) Structure and functional expression of cloned rat serotonin 5HT-2 receptor. EMBO J 7:4135–4140

    PubMed  CAS  Google Scholar 

  • Pritchett DB, Sontheimer H, Shivers B, Ymer S, Kettenmann H, Schofield PR, Seeburg PH (1989) Importance of a novel GABA A receptor subunit for benzodiazepine pharmacology. Nature 38:582–585

    Google Scholar 

  • Probst A, Dufresne JJ (1975) Paralysie supranucléaire progressive (ou Dystonie oculo-facio-cervicale). Arch Suisses Neurol Neurochir Psychiatr 116:107–134

    CAS  Google Scholar 

  • Probst A, Cortés R, Palacios JM (1986) The distribution of glycine receptors in the human brain. A light microscopic autoradiographic study using 3H-strychnine. Neuroscience 17:11–35

    PubMed  CAS  Google Scholar 

  • Probst A, Langui D, Lautenschlager C, Ulrich J, Brion JP, Anderton HB (1988a) Progressive supranuclear palsy: extensive neuropil threads in addition to neurofibrillary tangles. Acta Neuropathol 77:61–68

    PubMed  CAS  Google Scholar 

  • Probst A, Cortés R, Ulrich J, Palacios JM (1988b) Differential modification of muscarinic cholinergic receptors in the hippocampus of patients with Alzheimer’s disease: an autoradiographic study. Brain Res 450:190–201

    PubMed  CAS  Google Scholar 

  • Quirion R, Chieueh CC, Everist HD, Pert A (1985) Comparative localization of neurotensin receptors on nigrostriatal and mesolimbic dopaminergic terminals. Brain Res 327:385–389

    PubMed  CAS  Google Scholar 

  • Raftery MA, Hunkapiller MW, Strader CD, Hood LE (1980) Acetylcholine receptor: complex of homologous subunits. Science 208:1454–1457

    PubMed  CAS  Google Scholar 

  • Raisman R, Cash R, Ruberg M, Javoy-Agid F, Agid Y (1985) Binding of 3H-SCH 23 390 to Dl receptors in the putamen of control and parkinsonian subjects. Eur J Pharmacol 113:467–468

    PubMed  CAS  Google Scholar 

  • Regan JW, Kobilka TS, Yang Feng TL, Caron MG, Lefkowitz RJ, Kobilka BK (1988) Cloning and expression of a human kidney cDNA for an alpha-2 adrenergic receptor subtype. Proc Natl Acad Sci USA 85:6301–6305

    PubMed  CAS  Google Scholar 

  • Richards G, Möhler H, Schoch P, Häring P, Takacs B, Stahli C (1984) The visualization of neuronal benzodiazepine receptors in the brain by autoradiography and immunohistochemistry. J Recepì Res 4:657–669

    CAS  Google Scholar 

  • Richards G, Schoch P, Möhler H, Haefely W (1986a) Benzodiazepine receptors resolved. Experientia 42:121–126

    PubMed  CAS  Google Scholar 

  • Richards G, Möhler H, Haefely W (1986b) Mapping benzodiazepine receptors in the CNS by radiohistochemistry and immunohistochemistry. In: Panula P, Päivärinta Svinita S (eds) Neurohistochemistry: modern methods and applications. Alan R. Liss, New York, pp 629–677

    Google Scholar 

  • Rinne JO, Rinne JK, Laakso K, Lönnberg P, Rinne UK (1985) Dopamine D1 receptors in the parkinsonian brain. Brain Res 359:306–310

    PubMed  CAS  Google Scholar 

  • Rossor M, Iversen LL (1986) Non-cholinergic neurotransmitter abnormalities in Alzheimer’s disease. Br Med Bull 42:70–74

    PubMed  CAS  Google Scholar 

  • Rotter A, Birdsall NJM, Burgen ASV, Field PM, Smolen A, Raisman G (1979) Muscarinic receptors in the central nervous system of the rat. IV. A comparison of the effects of axotomy and deafferentation on the binding of 3H-propybenzilylcholine mustard and associated synaptic changes in the hypoglossal and pontine nuclei. Brain Res Rev 1:207–224

    CAS  Google Scholar 

  • Rowell PP, Winkler DL (1984) Nicotinic stimulation of 3H-acetylcholine release from mouse cerebral synaptosomes. J Neurochem 43:1593–1598

    PubMed  CAS  Google Scholar 

  • Ruberg M, Ploska A, Javoy-Agid F, Agid Y (1982) Muscarinic binding and choline acetyltransferase activity in Parkinsonian subjects with reference to dementia. Brain Res 232:129–139

    PubMed  CAS  Google Scholar 

  • Ruberg M, Javoy-Agid F, Hirsch E et al. (1985) Dopaminergic and cholinergic lesions in progressive supranuclear palsy. Ann Neurol 18:523–529

    PubMed  CAS  Google Scholar 

  • Sasaki H, Muramato O, Kanazawa I, Arai H, Kosaka K, Tizuka R (1986) Regional distribution of amino acid transmitters in postmortem brains of presenile and senile dementia of Alzheimer type. Ann Neurol 19:263–269

    PubMed  CAS  Google Scholar 

  • Savasta M, Dubois A, Feuerstein C, Manier M, Scatton B (1987) Denervation supersensitivity of striatal D2-dopamine receptors is restricted to the ventro- and dorsolateral regions of the striatum. Neurosci Lett 74:180–186

    PubMed  CAS  Google Scholar 

  • Savasta M, Ruberte E, Palacios JM, Mengod G (1989) The colocalization of cholecystokinin and tyrosine hydroxylase mRNAs in mesencephalic dopaminergic neurons in the rat brain examined by in situ hybridization. Neuroscience 29:363–369

    PubMed  CAS  Google Scholar 

  • Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y (1983) Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Res 275:321–328

    PubMed  CAS  Google Scholar 

  • Scatton B, Dubois A, Javoy-Agid F, Camus A (1984) Autoradiographic localization of muscarinic cholinergic receptors at various levels of the human spinal cord. Neurosci Lett 49:239–245

    PubMed  CAS  Google Scholar 

  • Schoch P, Möhler H (1983) Purified benzodiazepine receptor retains modulation by GABA. Eur J Pharmacol 95:323–324

    PubMed  CAS  Google Scholar 

  • Schoenen J, Reznik M, Delwaide PJ, Vanderhaeghen JJ (1985) Etude immunocytochimique de la distribution spinale de la substance P, des encéphalines, de la cholécystokinine et de la serotonine dans la sclérose latérale amyotrophique. CR Soc Biol (Paris) 179:528–534

    CAS  Google Scholar 

  • Schofield PR, Darlison MG, Fujita N et al. (1987) Sequence and functional expression of the GABA A receptor shows a ligand-gated receptor super family. Nature 328:221–227

    PubMed  CAS  Google Scholar 

  • Schofield PR, Pritchett DB, Sontheimer H, Kettenmann H, Sehburg PH (1989) Sequence and expression of human GABA A receptor alpha 1 and beta 1 subunits. FEBS Lett 244:361–364

    PubMed  CAS  Google Scholar 

  • Schwarz JH (1985) Molecular aspects of postsynaptic receptors. In: Kandel EM, Schwarz JH (eds) Principles of neural science, 2nd. edn Elsevier, Amsterdam, pp 159–168

    Google Scholar 

  • Sealock P, Barnaby EW, Froehner SC (1984) Ultrastructural localization of the Mr 43000 protein and the acetylcholine receptor in torpedo postsynaptic membranes using monoclonal antibodies. J Cell Biol 98:2239–2244

    PubMed  CAS  Google Scholar 

  • Sequier JM, Richards JG, Malherbe P, Price GW, Mathews S, Möhler H (1988) Mapping of brain areas containing RNA homologous to cDNAs encoding the alpha and beta subunits of the rat GABA A alpha-aminobutyrate receptor. Proc Natl Acad Sci USA 85:7815–7819

    PubMed  CAS  Google Scholar 

  • Shepherd GM (1988) Neurobiology, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Sigel E, Stephenson A, Mamalaki C, Barnard E A (1983) A gamma-amino-butyric acid/benzodi-azepine receptor complex of bovine cerebral cortex: purification and partial characterization. J Biol Chem 258:6965–6971

    PubMed  CAS  Google Scholar 

  • Spindel ER, Wurtman RJ, Bird ED (1981) Increased TRH content in the basal ganglia in Huntington’s disease. N Engl J Med 303:1235–1236

    Google Scholar 

  • Steele JC (1972) Progressive supranuclear palsy. Brain 95:693–704

    PubMed  CAS  Google Scholar 

  • Steele JC, Richardson JC, Olszewski J (1964) Progressive supranuclear palsy: a heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum, with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol 10:333–359

    PubMed  CAS  Google Scholar 

  • Storm-Mathisen J (1976) Distribution of the components of the GABA system in neuronal tissue: cerebellum and hippocampus effects of axotomy. In: Robert E, Chase T, Tower DB (eds) GABA in nervous system function. Raven, New York, pp 149–168

    Google Scholar 

  • Swanson LW, Simmons DM, Whiting PJ, Lindstrom J (1987) Immunohistochemical localization of neuronal nicotinic receptors in the rodent central nervous system. J Neurosci 7:3334–3342

    PubMed  CAS  Google Scholar 

  • Tanzi RE, St. George-Hyslop PH, Gusella F (1989) Molecular genetic approaches to Alzheimer’s disease. Trends Neurosci 12:152–157

    PubMed  CAS  Google Scholar 

  • Tenovuo O, Rinne UK, Viljanen MK (1984) Substance P immunoreactivity in the post mortem Parkinsonian brain. Brain Res 303:113–116

    PubMed  CAS  Google Scholar 

  • Troncoso JC, Cork L, Whitehouse PJ, Kuhar MJ, Price DL (1984) Canine inherited ataxia: neurotransmitter receptors in the cerebellum. Ann Neurol 16:135

    Google Scholar 

  • Tsiotos P, Plaitakis A, Mitsacos A, Voukelatou G, Michalodimitrakis M, Kouvelas ED (1989) Glutamate binding sites of normal and atrophic human cerebellum. Brain Res 481:87–96

    PubMed  CAS  Google Scholar 

  • Uhl GR, Whitehouse PJ, Price DL, Tourtellotte WW, Kuhar M J (1984) Parkinson’s disease: depletion of substantia nigra neurotensin receptors. Brain Res 308:186–190

    PubMed  CAS  Google Scholar 

  • Uhl GR, Hedreen JC, Price DL (1985) Parkinson’s disease: loss of neurons from the ventral tegmental area contralateral to therapeutic surgical lesions. Neurology 35:1215–1218

    PubMed  CAS  Google Scholar 

  • Uhl GR, Hackney GO, Torchia M et al. (1986) Parkinson’s disease: nigral receptor changes support peptidergic role in nigrostriatal modulation. Ann Neurol 20:194–203

    PubMed  CAS  Google Scholar 

  • Unnerstall JR, Niehoff DL, Kuhar M J, Palacios JM (1982) Quantitative receptor autoradiography using 3H ultrafilm: application to multiple benzodiazepine receptors. J Neurosci Methods 6:59–73

    PubMed  CAS  Google Scholar 

  • Vilaró MT, Palacios JM, Mengod G (1990a) Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci. Lett. 114:154–159

    PubMed  Google Scholar 

  • Vilaró MT, Wiederhold K-H, Palacios JM, Mengod G (1990b) Muscarinic cholinergic receptors in the rat caudate-putamen and olfactory tubercle belong predominantly to the m4 class: in situ and receptor autoradiography evidence. Neuroscience, in press.

    Google Scholar 

  • Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP (1985) Neuropatho-logical classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    PubMed  CAS  Google Scholar 

  • Wada K, Ballivet M, Boulter J et al. (1988) Function and expression of a new pharmacological subtype of brain nicotonic acetylcholine receptor. Science 240:330–334

    PubMed  CAS  Google Scholar 

  • Waeber C, Palacios JM (1989) Serotonin-1 receptor binding sites in the human basal ganglia are decreased in Huntington’s chorea but not in Parkinson’s disease: a quantitative in vitro autoradiographic study. Neuroscience

    Google Scholar 

  • Walker FO, Young AB, Penney JB, Dovorini-Zis K, Shoulson I (1984) Benzodiazepine and GAB A receptors in early Huntington’s disease. Neurology 34:1237–1240

    PubMed  CAS  Google Scholar 

  • Wastek GJ, Stern LZ, Johnson PC, Yamamura HI (1976) Huntington’s disease: regional alteration in muscarinic cholinergic receptor binding in human brain. Life Sci 19:1033–1040

    PubMed  CAS  Google Scholar 

  • Wenthold RJ, Parakkal MH, Oberdorfer MD, Altschuler RA (1988) Glycine receptor immunoreactivity in the ventral cochlear nucleus of the guinea pig. J Comp Neurol 276:423–435

    PubMed  CAS  Google Scholar 

  • Whitehouse PJ (1985) Receptor autoradiography: applications in neuropathology. Trends Neurosci 8:434–437

    Google Scholar 

  • Whitehouse PJ, Wamsley JK, Zarbin MA, Price DL, Tourtellotte WW, Kuhar M J (1983) Amyotrophic lateral sclerosis: alterations in neurotransmitter receptors. Ann Neurol 14:8–16

    PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Trifiletti RR, Jones BE, Jolstein S, Price DL, Snyder SH, Kuhar MJ (1985) Neurotransmitter receptor alterations in Huntington’s disease: autoradiographic and homogenate studies with special reference to benzodiazepine receptor complex. Ann Neurol 18:202–210

    PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Martino AM, Marcus K, Price DL, Kellar KJ (1986a) Reductions in 3H-acetylcholine nicotinic binding sites in cortex in Alzheimer’s disease: an autoradiographic study. Neurology 36:270

    Google Scholar 

  • Whitehouse PJ, Muramoto O, Troncoso JC, Kanazawa I (1986b) Neurotransmitter receptors in olivopontocerebellar atrophy: an autoradiographic study. Neurology 36:193–197

    PubMed  CAS  Google Scholar 

  • Whiting P, Lindstrom J (1987) Purification and characterization of a nicotinic acetylcholine receptor from rat brain. Proc Natl Acad Sci USA 84:595–599

    PubMed  CAS  Google Scholar 

  • Young AB, Penney JB (1984) Neurochemical anatomy of movement disorders. Neurol Clin 2:417–433

    PubMed  CAS  Google Scholar 

  • Young WS III, Kuhar MJ (1979) Autoradiographic localization of benzodiazepine receptors in brains of humans and animals. Nature 280:393–395

    Google Scholar 

  • Young WS III, Bonner TI, Brann MR (1986) Mesencephalic dopamine neurons regulate the expression of neuropeptide mRNAs in the rat forebrain. Proc Natl Acad Sci USA 83:9827–9831

    PubMed  CAS  Google Scholar 

  • Zarbin MA, Wamsley JK, Kuhar M J (1981) Glycine receptor: light microscopic autoradiographic localization with strychnine. J Neurosci 1:532–547

    PubMed  CAS  Google Scholar 

  • Zezula J, Cortés R, Probst A, Palacios JM (1988) Benzodiazepine receptor sites in the human brain: autoradiographic mapping. Neuroscience 25:771–795

    PubMed  CAS  Google Scholar 

  • Zweig RM, Whitehouse PJ, Casanova MF, Walker LC, Jankel WR, Price DL (1987) Loss of pedunculopontine neurons in progressive supranuclear palsy. Ann Neurol 22:18–25

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Probst, A., Mengod, G., Palacios, J.M. (1991). Neurotransmitter Receptors in Human Brain Diseases. In: Seifert, G. (eds) Cell Receptors. Current Topics in Pathology, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75515-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75515-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75517-0

  • Online ISBN: 978-3-642-75515-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics