Skip to main content

Behavioral and Neural Pattern Generation: The Concept of Neurobehavioral Dynamical Systems

  • Conference paper
Cardiorespiratory and Motor Coordination

Abstract

The concept of neurobehavioral dynamical system (NBDS) is introduced as a unifying explanation of the following facts of neural and behavioral patterns generation, namely: 1) that numerous physical mechanisms are capable of realizing the same neural and behavioral patterns; 2) that the same network can produce multiple patterns, a feature known as multifunctionality; and, 3) that networks can switch flexibly and spontaneously from one configuration to another under certain influences. Synergetic phase transitions provide the methodological strategy through which to discover laws of neural and behavioral pattern generation. At transitions, patterns arise in a self-organized fashion, as collective states produced by coupled nonlinear dynamics. Identified laws: 1) possess so-called ‘universal’ properties, governing dynamical behavior on several scales of observation (e.g. individual neurons, neural networks, kinematics...) and in different systems (thereby accounting for fact #1 above); 2) exhibit multistability and bifurcation depending on parameter values (fact #2 above); and 3) are stochastic, fluctuations playing a key role in probing the stability of the pattern dynamics and promoting labile change (fact #3). In a NBDS, it is not necessary to posit a separate pattern generator for each observed behavior. Rather, where the system “lives” in the parameter space of the law, determines whether ordered or irregular patterns are observed. Linkage among different levels of description is by virtue of shared dynamical laws, which incorporate both chance and choice.

This research was supported by NIMH (Neurosciences Research Branch) grant MH42900-01, U.S. Office of Naval Research contract N00014-88-J-1191, and NINCDS grant NS-24771.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold VI (1974) Mathematical methods of classical mechanics. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bak P, Bohr T, Jensen MH (1984) Mode-locking and the transition to chaos in dissipative systems. Phys Scripta T9: 50–58

    Google Scholar 

  • Bramble DM, Carrier DR (1983) Running and breathing in mammals. Science 219: 251–256

    Article  PubMed  CAS  Google Scholar 

  • DeGuzman GC, Kelso JAS (1991) Multifrequency behavioral patterns and the phase attractive circle map. Biol Cybernet

    Google Scholar 

  • Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Monk M, Reitboeck HJ (1988) Coherent oscillations: a mechanisms of feature linking in the visual cortex? Biol Cybernet 60: 121–130

    Article  CAS  Google Scholar 

  • Getting PA (1989) Emerging principles governing the operation of neural networks. Annu Rev Neurosci 12: 185–204

    Article  PubMed  CAS  Google Scholar 

  • Glazier JA, Libchaber A (1988) Quasiperiodicity and dynamical systems: a experimentalist’s view. IEEE Trans Circ Syst 35: 790

    Article  Google Scholar 

  • Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334–337

    Article  PubMed  CAS  Google Scholar 

  • Grillner S (1977) On the neural control of movement. A comparison of different basic rhythmic behaviors. In: Stent GS (ed) Function and formation of neural systems. Berlin, Dahlem Konferenzen

    Google Scholar 

  • Grillner S, Buchanan JT, Wallen P, Brodin L (1988) Neural control of locomotion in lower vertebrates: from behavior to ionic mechanisms. In: Cohen AV, Rossignol S, Grillner S (eds) Neural control of rhythmic movements in vertebrates. Wiley, New York, pp 1–40

    Google Scholar 

  • Guevara MR, Glass L, Shrier A (1981) Phase locking, period-doubling bifurcations and irregular dynamics in periodically stimulated cardiac cells. Science 211: 1350–1353

    Article  Google Scholar 

  • Guttman R, Feldman A, Jakobsson E (1980) Frequency entrainment of squid axon membrane. J Membr Biol 56: 9–18

    Article  PubMed  CAS  Google Scholar 

  • Haken H (1983) Synergetics, an introduction: non-equilibrium phase transitions and self-organization in physics, chemistry and biology, 3rd edn. Springer, Berlin Heidelberg New York (Springer Series Synergetics, vol 1 )

    Google Scholar 

  • Haken H (1983) Synopsis and introduction. In: Basar E, Flohr H, Haken H, Mandell AJ (eds) Synergetics of the Brain. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Haken H, Kelso JAS, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biol Cybernet 39: 139–156

    Google Scholar 

  • Jeka JJ, Kelso JAS (1989) The dynamic pattern approach to coordinated behavior: a tutorial review. In: Wallace SA (ed) Perspectives on the coordination of movement. North-Holland, Amsterdam, pp 3–45

    Chapter  Google Scholar 

  • Kay BA, Kelso JAS, Saltzman EL, Schöner G (1987) The space-time behavior of single and bimanual movements: data and model. J Exp Psychol [-Hum Percept] 13: 178–192

    Article  CAS  Google Scholar 

  • Kay BA, Kelso JAS, Saltzman EL (1991) Steady-state and perturbed rhythmical movements: a dynamical analysis. J Exp Psychol [Hum Percept] 17: 183–197

    Article  CAS  Google Scholar 

  • Kelso JAS (1981) On the oscillatory basis of movement. Bull Psychon Soc 18: 63

    Google Scholar 

  • Kelso JAS (1984) Phase transitions and critical behavior in human bimanual coordination. Am J Physiol [Reg Integr Compar Physiol] 15: R1000 - R1004

    Google Scholar 

  • Kelso JAS (1990) Phase transitions: foundations of behavior. In: Haken H, Stadler M (eds) Synergetics of Cognition. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kelso JAS, DeGuzman G (1988) Order in time: how cooperation between the hands informs the design of the brain. In: Haken H (ed) Neural and synergetic computers. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kelso JAS, Schöner G (1987) Toward a physical (synergetic) theory of biological coordination. In: Graham R, Wunderlin A (eds) Lasers and synergetics. Springer Proceedings in Physics 19: 224–237

    Google Scholar 

  • Kelso JAS, Schöner G (1988) Self-organization of coordinative movement patterns. Hum Movement Sci 7: 27–46

    Article  Google Scholar 

  • Kelso JAS, Schöner G, Scholz JP, Haken H (1987) Phase-locked modes, phase transitions and component oscillators in biological motion. Phys Scr 35: 79–87

    Article  Google Scholar 

  • Kelso JAS, Scholz JP (1985) Cooperative phenomena in biological motion. In: Haken H (ed) Complex Systems: operational approaches in neurobiology, physical systems and computers. Springer, Berlin Heidelberg New York, pp 124–149

    Chapter  Google Scholar 

  • Kelso JAS, Scholz JP, Schöner G (1986) Non-equilibrium phase transitions in coordinated biology motion: critical fluctuations. Phys Lett A118: 279–284

    Article  Google Scholar 

  • Kelso JAS, Holt KG, Rubin R, Kugler PN (1981) Patterns of human interlimb coordination emerge from the properties of nonlinear limit cycle oscillatory processes: theory and data. J Motor Behav 18 (4): 226–261

    Google Scholar 

  • Kelso JAS, Tuller B, Vatikiotis-Bateson E, Fowler C (1984) Functionally specific articulatory cooperation following jaw perturbations during speech: evidence for coordinative structures. J Exp Psychol [Hum Percept] 10 (6): 812–832

    Article  CAS  Google Scholar 

  • Kopell N (1988) Toward a theory of modelling central pattern generators. In: Cohen AV, Rossignol S, Grillner S (eds) Neural control of rhythmic movements in vertebrates. Wiley, New York, pp 369–413

    Google Scholar 

  • Kristan WB (1980) Generation of rhythmic motor patterns. In: Pinsker HM, Willis Jr WD (eds) Information processing in the nervous system. Raven, New York, pp 241–261

    Google Scholar 

  • Kulagin AS, Shik ML (1970) Interaction of the symmetrical limbs during controlled locomotion. Biofizika 15: 171–178

    Google Scholar 

  • Mandell AJ, Kelso JAS (1989) Dissipative and statistical mechanics of amine neuron activity. In: Ellison JA, Uberall H (eds) Essays on classical and quantum dynamics. Gordon-Breach, New York

    Google Scholar 

  • Marder, E (1989) Modulation of neural networks underlying behavior. Sem Neurosci 1 (1): 3–4

    Google Scholar 

  • Matsumoto G, Aihara K, Hanyu Y, Takahashi N, Yoshizana S, Nagumo J (1987) Chaos and phase locking in normal squid axons. Phys Lett Al29: 162–166

    Google Scholar 

  • Mpitsos GJ, Creech HC, Cohan CS, Mendelson M (1988) Variability and chaos: neurointegrative principles in self-organization of motor patterns. In: Kelso JAS, Mandell AJ, Shlesinger MF (eds) Dynamic patterns in complex systems. World Scientific, Singapore, pp 169–190

    Google Scholar 

  • Rand RH, Cohen A, Holmes PJ (1988) Systems of coupled oscillators as models of central pattern generators. In: Cohen A, Rossignol S, Grillner S (eds) Neural control of rhythmic movements in vertebrates. Wiley, New York, pp 333–367

    Google Scholar 

  • Scholz JP, Kelso JAS (1989) A quantitative approach to understanding the formation and change of coordinated movement patterns. J Motor Behav 21: 122–144

    CAS  Google Scholar 

  • Scholz JP, Kelso JAS, Schöner G (1987) Non-equilibrium phase transitions in coordinated biological motion: critical slowing down and switching time. Phys Lett Al23: 390–394

    Google Scholar 

  • Schöner G, Kelso JAS (1988a) Dynamic pattern generation in behavioral and neural systems. Science 239:1513–1520

    Article  Google Scholar 

  • Schöner G, Kelso JAS ( 1988 b) A synergetic theory of environmentally-specified and learned patterns of movement coordination. I. Relative phase dynamics. Biol Cybernet 58: 71–80

    Article  Google Scholar 

  • Schöner G, Haken H, Kelso JAS (1986) A stochastic theory of phase transitions in human hand movement. Biol Cybernet 53: 442–452

    Article  Google Scholar 

  • Selverston AI (1988) Switching among functional states by means of neuromodulators in the lobster stomatogastric ganglion. Experientia 44: 376–383

    Article  CAS  Google Scholar 

  • Tank DW (1989) What details of neural circuits matter? Sem Neurosci 1 (1): 67–79

    Google Scholar 

  • Thelen E, Ulrich B, Niles D (1987) Bilateral coordination in human infants: stepping on a split-belt treadmill. J Exp Psychol [Hum Percept] 13 (3): 405–410

    Article  CAS  Google Scholar 

  • von Holst E (1973) Relative coordination as a phenomenon and as a method of analysis of central nervous function. In: The collected papers of Erich von Holst. University Press, Coral Gables

    Google Scholar 

  • Wallen P, Grillner S (1985) The effects of current passage on NMDA induced TTX resistant membrane potential oscillations in lamprey neurons active during locomotion. Neurosci Lett 56: 87–93

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kelso, J.A.S. (1991). Behavioral and Neural Pattern Generation: The Concept of Neurobehavioral Dynamical Systems. In: Koepchen, HP., Huopaniemi, T. (eds) Cardiorespiratory and Motor Coordination. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75507-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75507-1_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52279-9

  • Online ISBN: 978-3-642-75507-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics