Interrelation and Superposition of Respiratory and Cardiovascular Rhythms in EEG and Brainstem Reticular Unit Activity as Studied by Quantitative Spectral Analyses

  • T. HukuharaJr.
  • K. Takano
  • N. Kimura
  • F. Kato
Conference paper

Abstract

The main part of the neural networks responsible for the production of the respiratory rhythms [4, 5, 9–11, 14, 25] and several types of the cardiovascular rhythms [3, 7, 18, 20] may be located in the neural organizations of the brain stem. Both rhythms propagate caudally to the respiratory motoneuron pools and to the autonomic control mechanisms in the lower part of the neuroaxis, mainly to the respiratory motoneuron pools, preganglionic sympathetic neuron pools, and pre-ganglionic vagal cardiomotor neuron pools [4–6, 9, 12, 14, 23]. There is qualitative evidence that the brain stem respiratory neural networks send not only caudally but also rostrally the respiratory related rhythms to the higher central mechanisms, including many areas of the cerebral neocortex, some regions of the hypothalamus, thalamus, basal ganglia, and the limbic system [4, 8, 9, 14, 20, 26, 29] (Fig. 1). In addition, spontaneous periodic variations with different periods were also described in the EEG in neocortical areas of the cat [7, 9, 20, 26] (Fig. 2) and dog [3].

Keywords

Respiration Autocorrelation Diethyl Kato Cali 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baust W, Niemczyk H, Schaefer H, Vieth J (1962) Über ein pressosensibles Areal im hinteren Hypothalamus der Katze. Pflügers Arch 274: 374–384CrossRefGoogle Scholar
  2. 2.
    Bendat JS, Piersol AJ (1971) Random data: analysis and measurement procedures. Wiley, New York, pp 14–31Google Scholar
  3. 3.
    Camerer H, Stroh-Werz M, Krienke B, Langhorst P (1977) Postganglionic sympathetic activity with correlation to heart rhythm and central cortical rhythms. Pflügers Arch 370: 221–225PubMedCrossRefGoogle Scholar
  4. 4.
    Cohen MI (1979) Neurogenesis of respiratory rhythm in the mammal. Physiol Rev 59: 1105–1173PubMedGoogle Scholar
  5. 5.
    Euler C von (1986) Brain stem mechanisms for generation and control of breathing pattern. In: Cherniack NS, Widdicombe JG (eds) The respiratory system. American Physiological Society, Bethesda, pp 1–67 (Handbook of physiology, sect 3, vol II, part 1 )Google Scholar
  6. 6.
    Feldman JL, Ellenberger HH (1988) Central coordination of respiratory and cardiovascular control in mammals. Annu Rev Physiol 50: 593–606PubMedCrossRefGoogle Scholar
  7. 7.
    Gebber GL, Barman SM (1980) Basis for 2–6 cycles rhythm in sympathetic nerve discharge. Am J Physiol 239: R48 - R56PubMedGoogle Scholar
  8. 8.
    Hugelin A (1986) Forebrain and midbrain influence on respiration. In: Cherniack NS, Widdicombe JG (eds) The respiratory system. American Physiological Soeciety, Bethesda, pp 69–91 (Handbook of physiology, sect 3, vol II, part 1 )Google Scholar
  9. 9.
    Hukuhara T Jr (1973) Neuronal organization of the central respiratory mechanisms in the brain stem of the cat. Acta Neurobiol Exp (Warsz) 33: 219–244Google Scholar
  10. 10.
    Hukuhara T Jr (1974) Functional organization of brain stem respiratory neurons and rhythmogenesis. In: Umbach W, Koepchen HP (eds) Central rhythmic and regulation. Hippokrates, Stuttgart, pp 35–49Google Scholar
  11. 11.
    Hukuhara T (1976) Functional organization of brain stem respiratory neurons and its modulation induced by afferences. Coll Inst Natl Sante Rech Med, INSERM 59: 49–53Google Scholar
  12. 12.
    Hukuhara T Jr (1980) Spontaneous activity pattern, anatomical distribution of brain stem reticular neurons with correlation to the phrenic and renal sympathetic nerve activities and their responses to electrical stimulation of the spinal cord. In: Koepchen HP, Hilton SM, Trzebski A (eds) Central interaction between respiratory and cardiovascular control systems. Springer, Berlin Heidelberg New York, pp 21–29CrossRefGoogle Scholar
  13. 13.
    Hukuhara T Jr (1984) Discharge properties of respiratory modulated brainstem reticular neurons and their relation to slow arterial pressure fluctuations in the rabbit. In: Miyakawa K, Koepchen HP, Polosa HP (eds) Mechanisms of blood pressure waves. Springer, Berlin Heidelberg New York, pp 305–316Google Scholar
  14. 14.
    Hukuhara T Jr (1988) Organization of the brain stem neural mechanisms for generation of respiratory rhythm-current problems. Jpn J Physiol 38: 753–776PubMedCrossRefGoogle Scholar
  15. 15.
    Hukuhara T Jr, Takeda R (1975) Neuronal organization of central vasomotor control mechanisms in the brain stem of the cat. Brain Res 87: 419–429PubMedCrossRefGoogle Scholar
  16. 16.
    Hukuhara T Jr, Goto K, Kiguchi Y, Takano K (1979) Unterschiedliche Stabilität respiratorischer Einzelneuronenaktivität im Hirnstamm der Katze. Jikeikai Med J 26: 245–261Google Scholar
  17. 17.
    Hukuhara T Jr, Kimura N, Takano K, Fu W-J (1986) Cross-correlation analysis of phase relation between respiratory volleys in the phrenic, vagus and sympathetic nerve activities. J Auton Nery Syst [Suppl]: 281–284Google Scholar
  18. 18.
    Hukuhara T Jr, Nishikawa Y, Takano K, Kimura N (1986) Functional organization of brain stem reticular neurons in relation to the central cardiovascular control mechanisms in the cat. In: Nakamura K (ed) Brain and blood pressure control. Elsevier, Amsterdam, pp 13–22Google Scholar
  19. 19.
    Hukuhara T Jr, Takano K, Kato F, Kimura N (1988) Medullary inspiratory neurons with respiratory rhythm and little correlation to phrenic high-frequency oscillation. Tohoku J Exp Med 156 [Suppl]: 11–19PubMedCrossRefGoogle Scholar
  20. 20.
    Hukuhara T Jr, Miyakawa M, Kimura N, Takano K, Kato F (1987) Periodic variaton of electro-corticogram in relation to respiratory rhythm and long-term periodic fluctuation of the renal sympathetic nerve activity. In: Sieck GC, Gandevia SC, Cameron WE (ed) Respiratory muscles and their neuromotor control. Liss, New York, pp 121–125Google Scholar
  21. 21.
    Hukuhara T Jr, Goto K, Takano K, Kiguchi Y, Hattanmaru Y, Kimura N (1983) A new aspect of the functional organization of respiratory neurons in the brain stem with respect to the rhythmogenesis of respiration. Different stabilities of reticular respiratory neurons in the rabbit. In: Schläfke ME, Koepchen HP, See WR (eds) Central neurone environment and the control systems of breathing and circulation. Springer, Berlin Heidelberg New York, pp 185–196Google Scholar
  22. 22.
    Hukuhara T Jr, Saji Y, Kumadaki N, Kojima H, Tamaki H, Takeda R, Sakai F (1969) Die Lokalisation von atemsynchron entladenden Neuronen in der retikularen Formation des Hirnstammes der Katze unter verschiedenen experimentellen Bedingungen. Naunyn — Schmiedebergs Arch Pharmacol 263: 462–484Google Scholar
  23. 23.
    Koepchen HP (1983) Respiratory and cardiovascular “centres”: functional entirety or separate structures? In: Schläfke ME, Koepchen HP, See WR (eds) Central neurone environment and the control systems of breathing and circulations. Springer, Berlin Heidelberg New York, pp 221–237Google Scholar
  24. 24.
    Koepchen HP, Klüssendorf D, Sommer D (1981) Neurophysiological background of central neural cardiovascular respiratory coordination: basic remarks and experimental approach. J Auton Nery Syst 3: 335–368CrossRefGoogle Scholar
  25. 25.
    Koepchen HP, Klüssendorf D, Lazar H, Hukuhara T Jr (1985) Conclusions on respiratory rhythmogenesis drawn from lesion and cooling experiments predominantly in the region of ventrolateral nucleus of solitary tract (vINTS). In: Bianchi AL, Denavit-Saubie M (eds) Neurogenesis of central respiratory rhythm. MTP Press, Lancaster, pp 77–80Google Scholar
  26. 26.
    Kumagai H, Sakai F, Sakuma A, Hukuhara T Jr (1966) Relationship between activity of respiratory center and EEG. Prog Brain Res 21A: 98–111CrossRefGoogle Scholar
  27. 27.
    Langhorst P, Schulz G, Lambertz M (1984) Oscillating neuronal network of the ‘common brain stem system’. In: Miyakawa K, Koepchen HP, Plosa C (eds) Mechanisms of blood pressure waves. Springer, Berlin Heidelberg New York, pp 257–275Google Scholar
  28. 28.
    Polosa C (1984) Rhythms in the activity of the autonomic nervous system: their role in the generation of systemic arterial pressure waves. In: Miyakawa K, Koepchen HP, Polosa C (eds) Mechanism of blood pressure waves. Springer, Berlin Heidelberg New York, pp 27–41Google Scholar
  29. 29.
    Vibert JF, Caille D, Bertrand F, Gromysz H, Hugelin A (1979) Ascending projection from the respiratory centre to mesencephalon and diencephalon. Neurosci Lett 11: 29–33PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • T. HukuharaJr.
  • K. Takano
  • N. Kimura
  • F. Kato

There are no affiliations available

Personalised recommendations