Advertisement

Hannay Angles and Classical Perturbation Theory

  • S. Golin
  • A. Knauf
  • S. Marmi
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 47)

Abstract

We report on previous and recent work in classical perturbation theory related to the Hannay angles. They are a means of measuring an anholonomy effect in classical mechanics closely corresponding to the Berry phase in quantum mechanics.

Keywords

Hamiltonian System Berry Phase Average Theorem Dynamical Angle Adiabatic Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V.I. Arnol’d: Geometrical Methods in the Theory of Ordinary Differential Equations, Springer (New York, Heidelberg, Berlin 1983 )CrossRefGoogle Scholar
  2. [2]
    V.I. Arnol’d, V.V. Kozlov, A.I. Neishtadt: Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia of Mathematical Sciences, Vol. 3. Dynamical Systems, Z/7, Springer (Berlin, Heidelberg, New York 1988 )Google Scholar
  3. [3]
    M.V. Berry: Quantal phase factors accompanying adiabatic changes, Proc. Roy. Soc. London A392, 45–57 (1984)ADSMATHCrossRefGoogle Scholar
  4. [4]
    M.V. Berry: Classical adiabatic angles and quantai adiabatic phase, J. Phys. A: Math. Gen. 18, 15–27 (1985)ADSMATHCrossRefGoogle Scholar
  5. [5]
    S. Golin: Existence of the Hannay angle for single-frequency systems, J. Phys. A: Math. Gen. 21 4535–4547 (1988)MathSciNetADSMATHCrossRefGoogle Scholar
  6. [6]
    S. Golin: Can One Measure Hannay Angles?, Preprint (1989)Google Scholar
  7. [7]
    S. Golin, A. Knauf, S. Marmi: The Hannay Angles: Geometry, Adi-abaticity, and an Example, to appear in Commun. Math. Phys. 122 (1989)Google Scholar
  8. [8]
    S. Golin, S. Marmi: A Class of Systems with Measurable Hannay Angles, in preparationGoogle Scholar
  9. [9]
    J.H. Hannay: Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian, J. Phys. A: Math. Gen. 18, 221–230 (1985)MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    M. Kugler: Motion in Non Inertial Systems, Theory and Demonstrations, Preprint (1987)Google Scholar
  11. [11]
    R. Montgomery: The Connection Whose Holonomy is the Classical Adiabatic Angles of Hannay and Berry and Its Generalization to the Non-Integrable Case, Comm. Math. Phys. 120, 269–294 (1988)MathSciNetADSMATHCrossRefGoogle Scholar
  12. [12]
    A.I. Neishtadt: Averaging in multifrequency systems. II., Dokl. Akad. Nauk SSSR 226,1295–1298 (1976); English translatian: Sov. Phys. Dokl. 21, 80–82 (1976)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • S. Golin
    • 1
    • 2
  • A. Knauf
    • 1
  • S. Marmi
    • 3
  1. 1.Fachbereich MathematikTechnische Universität BerlinStraße des 17. Juni 136Germany
  2. 2.Dipartimento di Fisica and INFNUniversità di BolognaBolognaItaly
  3. 3.Dipartimento di FisicaUniversità di BolognaBolognaItaly

Personalised recommendations