Skip to main content

Part of the book series: Physics and Chemistry in Space ((SPACE,volume 21))

Abstract

It is widely recognized that even though the solar wind is essentially collisionless, to a good approximation it can be treated as a fluid. To understand this behavior, it is first necessary to understand the microscopic processes that control the macroscopic properties of the plasma. In a collisionless plasma such as the solar wind, it is now widely recognized that waves play a role similar to collisions in an ordinary fluid. As the plasma flows outward from the sun, dynamical changes cause the velocity distribution function to deviate from an equilibrium thermal distribution. In the absence of collisions these deviations continue to grow until the velocity-space gradients parallel and perpendicular to the magnetic field, ∂f/∂v || and ∂f/∂v become so large that plasma instabilities start to occur. These instabilities lead to the growth of waves. As the waves grow to large amplitudes, wave-particle interactions eventually act to eliminate the velocity- space gradients that cause the instability. Waves and instabilities thereby play a crucial role in preventing large deviations from thermal equilibrium. For a review of the types of plasma instabilities and wave-particle interactions that can occur in a plasma see, for example, Hasegawa [9.34], or Melrose [9.47].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R.R., C.C. Harvey, M.M. Hoppe, B.T. Tsurutani, T.E. Eastman, J. Etcheto, Plasma waves near the magnetopause, J. Geophys. Res., 87, 2087, 1982.

    Article  ADS  Google Scholar 

  2. Bardwell, S., M.V. Goldman, Three-dimensional Langmuir wave instabilities in type EI solar radio bursts, Astrophys. J., 209, 912, 1976.

    Google Scholar 

  3. Barnes, A., Hydromagnetic waves and turbulence in the solar wind. Solar System Plasma Physics, Vol. 1, ed. by E.N. Parker, C.F. Kennel, and L.J. Lanzerotti, North-Holland, Amsterdam, 249, 1979.

    Google Scholar 

  4. Beinroth, H.J., F.M. Neubauer, Properties of whistler-mode waves from 0.3 and 1.0 AU from Helios observations, J. Geophys. Res., 86, 7755, 1981.

    Article  ADS  Google Scholar 

  5. Coleman, P.J., Jr., Hydromagnetic waves in the interplanetary plasma, Phys. Rev. Lett., 17, 207, 1966.

    Article  ADS  Google Scholar 

  6. Coleman, P.J., Jr., Turbulence, viscosity, and dissipation in the solar wind plasma, Astrophys. J., 153, 371, 1968.

    Article  ADS  Google Scholar 

  7. Dehmel, G., F.M. Neubauer, D. Lukoschus, J. Wawretzko, E. Lammers, Das Induktionsspulen- Magnetometer-Experiment (E4), Raumfahrtforschung, 19, 241, 1975.

    ADS  Google Scholar 

  8. Denskat, K.U., F.M. Neubauer, Statistical properties of low-frequency magnetic fluctuations in the solar wind from 0.29 to 1.0 AU during solar minimum conditions: Helios 1 and 2, J. Geophys. Res., 87, 2215, 1982.

    Article  ADS  Google Scholar 

  9. Denskat, K.U., H.J. Beinroth, FJvl. Neubauer, Interplanetary magnetic field power spectra with frequencies from 2.4 x 10–5 Hz to 470 Hz from Helios-observations during solar minimum conditions, J. Geophys. Res., 54, 60, 1983.

    Google Scholar 

  10. Dum, C.T., E. Marsch, W. Pilipp, D.A. Gumett, Ion sound turbulence in the solar wind, in Solar Wind Four, ed. by H. Rosenbauer, Max-Planck-Institut Report MPAE WlOO-81–31, Lindau, Germany, 299, 1981.

    Google Scholar 

  11. Famberg, J., R.G. Stone, Satellite observations of type III solar radio bursts at low frequencies. Space Sci. Rev., 16, 145, 1974.

    ADS  Google Scholar 

  12. Feldman, W.C., J.R. Asbridge, S J. Bame, M.D. Montgomery, S.P. Gary, Solar wind electrons, J. Geophys. Res., 80, 4181, 1975.

    Article  ADS  Google Scholar 

  13. Feldman, W.C., J.R. Asbridge, S.J. Bame, S.P. Gary, M.D. Montgomery, Electron parameter correlations in high-speed streams and heat flux instabilities, J. Geophys. Res., 81, 2377, 1976.

    Article  ADS  Google Scholar 

  14. Forslund, D.S., Instabilities associated with heat conduction in the solar wind and their consequences, J. Geophys. Res., 75, 17, 1970.

    Article  ADS  Google Scholar 

  15. Freud, H.P., K. Papadopoulos, Oscillating two-stream and parametric decay instability in a weakly magnetized plasma, Phys. Fluids, 23, 139, 1980.

    Article  ADS  Google Scholar 

  16. Fuselier, S.A., D.A. Gumett, Short wavelength ion waves upstream of the Earth*s bow shock, J. Geophys. Res., 89, 91, 1984.

    Article  ADS  Google Scholar 

  17. Galeev, A.A., R.Z. Sagdeev, YUS. Sigov, V.D. Shapiro, V.l. Shevchenko, Nonlinear theory for the modulation instability of plasma waves, Sov. J. Plasma Phys. Engl. Transl., 1,5,1975.

    Google Scholar 

  18. Gary, S.P., W.C. Feldman, D.W. Forslund, M.D. Montgomery, Electron heat flux instabilities in the solar wind, Geophys. Res. Lett., 2, 79, 1975a.

    Article  ADS  Google Scholar 

  19. Gary, SP., W.C. Feldman, D.W. Forslund, M.D. Montgomery, Heat flux instabilities in the solar wind, J. Geophys. Res., 80, 4197, 1975b.

    Article  ADS  Google Scholar 

  20. Gary, SP., M.D. Montgomery, W.C. Feldman, D.W. Forslund, Proton temperature anisotro- phy instabilities in the solar wind, J. Geophys. Res., 81, 1241, 1976.

    Google Scholar 

  21. Ginzburg, V.L., V.V. Zheleznyakov, On the possible mechanism of sporadic radio emission (radiation in an isotropic plasma), Sov. Astron., AJ 2, 653, 1958.

    ADS  Google Scholar 

  22. Gliem, F., G. Dehmel, G. Musmann, C. Türke, U. Krupstedt, R.P. Kugel, Die Bordrechner der Helios-Magnetometer- Experiment E2 and E4, Raumfahrtforschung, 20, 16, 1976.

    ADS  Google Scholar 

  23. Goldman, M.V., G.F. Reiter, D.R. Nicholson, Radiation from a strongly turbulent plasma: Application to electron beam-excited solar emission, Phys. Fluids, 23, 388, 1980.

    Article  ADS  Google Scholar 

  24. Gumett, D.A., R.R. Anderson, Electron plasma oscillations associated with type HI radio bursts. Science, 194, 1159, 1976.

    Article  ADS  Google Scholar 

  25. Gumett, D.A., R.R. Anderson, Plasma wave electric fields in the solar wind: Initial results from Helios 1, J. Geophys. Res., 82, 632, 1977.

    Article  ADS  Google Scholar 

  26. Gumett, D.A., L.A. Frank, Ion acoustic waves in the solar wind, J. Geophys. Res., 83, 58, 1978.

    Article  ADS  Google Scholar 

  27. Gumett, D.A., R.R. Anderson, D.L. Odem, The University of Iowa, HELIOS solar wind plasma wave experiment, [E5a], Raumfahrtforschung, 5 245, 1975.

    ADS  Google Scholar 

  28. Gumett, D.A., M.M. Baumback, H. Rosenbauer, Stereoscopic direction finding analysis of a type in solar radio burst: Evidence for emission at 2fp-, J. Geophys. Res., 83, 616, 1978.

    Article  ADS  Google Scholar 

  29. Gumett, D.A., R.R. Anderson, F.L. Scarf, W.S. Kurth, The heliocentric radial variation of plasma oscillations associated with type in radio bursts, J. Geophys. Res., 83, 4147, 1978.

    Article  ADS  Google Scholar 

  30. Gumett, D.A., F.M. Neubauer, R. Schwenn, Plasma wave turbulence associated with an interplanetary shock, J. Geophys. Res., 84, 541, 1979.

    Article  ADS  Google Scholar 

  31. Gumett, D.A., E. Marsch, W. Pilipp, R. Schwenn, H. Rosenbauer, Ion acoustic waves and related plasma observations in the solar wind, J. Geophys. Res., 84, 2029, 1979.

    Article  ADS  Google Scholar 

  32. Gumett, D.A., R.R. Anderson, R.L. Tokar, Plasma oscillations and the emissivity of type III radio bursts, in Radio Physics of the Sun, ed. by M. Kundu and T. Gergely, IAU, 369, 1980.

    Google Scholar 

  33. Gumett, D.A., J.E. Maggs, DJL. Gallagher, W.S. Kurth, F.L. Scarf, Parametric interaction and spatial collapse of beam-driven Langmuir waves in the solar wind, J. Geophys. Res., 86, 88–33, 1981.

    Google Scholar 

  34. Hasegawa, A.,Plasma Instabilities and Nonlinear Effects, Springer-Verlag, Beriin, Heidelberg, New York, 1975.

    Book  Google Scholar 

  35. Hundhausen, A J., Coronal Expansion and Solar Wind, Springer-Veriag, Berlin, Heidelberg, New York, 1972.

    Book  Google Scholar 

  36. Kaiser, M.L., The solar elongation distribution of low frequency radio bursts, Solar Physics, 45, 181, 1975.

    Article  ADS  Google Scholar 

  37. Kellogg, PJ., Fundamental emission in three type III solar bursts, Astrophys. J., 236 696, 1980.

    Article  ADS  Google Scholar 

  38. Kellogg, P J., Observations concerning the generation and propagation of type EI solar bursts, Astron. Astrophys., 169, 329, 1986.

    ADS  Google Scholar 

  39. Kennel, C.F., H.E. Petschek, Limit on stably trapped particle fluxes, J. Geophys. Res., 71, 1–28, 1966.

    ADS  Google Scholar 

  40. Kennel, CP., F.L. Scarf, F.V. Coroniti, E.J. Smith, D.A. Gumett, J. Geophys. Res., 87, 17, 1982

    Google Scholar 

  41. Krall, N.A., A.W. Trivelpiece, Principles of Plasma Physics McGraw-Hill, 1973.

    Google Scholar 

  42. Kundu, M.R.,Solar Radio Astronomy Interscience, New York, 1965.

    Google Scholar 

  43. Kurth, W.S., D.A. Gumett, F.L. Scarf, High-resolution spectrograms of ion acoustic waves in the solar wind, J. Geophys. Res., 84, 3413, 1979.

    Article  ADS  Google Scholar 

  44. Lemons, D.S., J.R. Asbridge, S J. Bame, W.C. Feldman, S.P. Gary, J.T. Gosling, The source of electrostatic fluctuations in the solar wind, J. Geophys. Res., 84, 2135, 1979.

    Article  ADS  Google Scholar 

  45. Lin, R.P., D.W. Potter, D.A. Gumett, F.L. Scarf, Energetic electrons and plasma waves associated with a solar type III radio burst, Astrophys. J., 251, 364, 1981.

    Article  ADS  Google Scholar 

  46. Marsch, E., T. Chang, Lower hybrid waves in the solar wind, J. Geophys. Res., 88, 6869, 1983

    Article  ADS  Google Scholar 

  47. Mehose, D.B.,Instabilities in Space and Laboratory Plasmas Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  48. Musmann, G., F.M. Neubauer, A. Maier, E. Lammers, Das Forstersonden-Magneticfeld- experiment (E2), Raumfahrtforschung, 19, 232, 1975.

    ADS  Google Scholar 

  49. Neubauer, F.M., G. Musmann, G. Dehmel, Fast magnetic fluctuations in the solar wind: Helios 1, J. Geophys. Res., 82, 3201, 1977.

    Article  ADS  Google Scholar 

  50. Nicholson, D.R., M.V. Goldman, P. Hoyng, J.S. Weatherall, Nonlinear langmuir waves during type m solar radio bursts, Ap. J., 223, 605, 1978.

    Article  ADS  Google Scholar 

  51. Papadopoulos, K., On the physics of strong turbulence for electron plasma waves, Proc. Varenna School on Plasma Physics, Pergamon, New York, 355, 1978.

    Google Scholar 

  52. Papadopoulos, K., M.L. Goldstein, R.A. Smith, Stabilization of electron streams in the type m solar radio bursts, Astrophys. J., 190, 175, 1974.

    Article  ADS  Google Scholar 

  53. Scarf, FL., J.H. Wolfe, R.W. Silva, A plasma instability associated with themial anisotropies in the solar wind, J. Geophys. Res., 72, 993, 1967.

    Article  ADS  Google Scholar 

  54. Scarf, F.L., R.W. Fredricks, L.A. Frank, C.T. Russell, PJ. Coleman, Jr., M. Neugebauer, Direct correlations of large amplitude waves with suprathermal protons in the upstream solar wind, J. Geophys. Res., 75, 7316, 1970.

    Article  ADS  Google Scholar 

  55. Scarf, F.L., E. Marsch, W. Pilipp, D.A. Gumett, Ion sound turbulence in the solar wind, in Solar Wind Four, ed. by H. Rosenbauer, Max-Planck-Institut Report MPAE WlOO-81–31, Lindau, Germany, 299, 1981.

    Google Scholar 

  56. Schwartz, S J., Plasma instabilities in the solar wind: A theoretical review. Rev. Geophys. and Space Phys., 18, 313, 1980.

    Article  ADS  Google Scholar 

  57. Stix, T., The Theory of Plasma Waves McGraw-Hill, New York, 1962.

    MATH  Google Scholar 

  58. Tokar, R.L., D.A. Gumett, The volume emissivity of type HI radio bursts, J. Geophys. Res., 85, 2353, 1980.

    Article  ADS  Google Scholar 

  59. Wild, J.P., Observations of the spectrum of high- intensity solar radiation at meter wavelengths, Aust. J. Sci. Res., 3, 541, 1950.

    ADS  Google Scholar 

  60. Wong, A.Y., B.H. Quon, Spatial collapse of beam-driven plasma waves, Phys. Rev. Lett., 34, 1499, 1975.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gurnett, D.A. (1991). Waves and Instabilities. In: Schwenn, R., Marsch, E. (eds) Physics of the Inner Heliosphere II. Physics and Chemistry in Space, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75364-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75364-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75366-4

  • Online ISBN: 978-3-642-75364-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics