Advertisement

Utilization of Sensory Information for Motor Control

Chapter

Abstract

Interactions between perception and action can be considered on various levels, as stressed by Prinz and Sanders (1984), starting with neurophysiological problems and ending with philosophical ones. The problem of how an animal uses information about its own state and about the environment for controlling movement is among the lower-level problems. It is now generally acknowledged that most behaviors arise from a combination of “central” elements which rely on autonomous neural mechanisms and “peripheral” elements which rely on sensory information. Movements are not simply driven by stimuli in a reflex-like manner: in controlling their movements, organisms have some degree of autonomy, that is, some degree of independence from sensory input (von Hoist, 1937). On the other hand, there can be no doubt that most movements are influenced by sensory input, despite some opinions to the contrary (e. g., Jones, 1974). Thus, the problem is to determine how sensory input is combined with central or autonomous control. In the combined system, peripheral information can be seen to have three functions: (a) it influences the decision as to what action is to be performed; (b) it participates in adjusting the parameters of the movements required for the action; and (c) it acts such to ensure that the movements are carried out correctly in the face of potential disturbances.

Keywords

Motor Control Sensory Input Reference Signal Sensory Information Sensory Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbs, J.H., Gracco, V.L., Cole, K.J. (1984). Control of multi-movement coordination: sensorimotor mechanisms in speech motor programming. Journal of Motor Behavior, 16, 195–232.PubMedGoogle Scholar
  2. Adams, J. A. (1971). A closed-loop theory of motor learning. Journal of Motor Behavior, 3, 111–150.PubMedGoogle Scholar
  3. Baily, J.S. (1972). Adaptation to prisms: do proprioceptive changes mediate adapted behavior without ballistic arm movements? Quarterly Journal of Experimental Psychology, 24, 8–20.PubMedCrossRefGoogle Scholar
  4. Bässler, U. (1974). Vom femoralen Chordotonalorgan gesteuerte Reaktionen bei der Stabheuschrecke Carausius morosus: Messung der von der Tibia erzeugten Kraft im aktiven und inaktiven Tier. Kybernetik, 16, 213–226.CrossRefGoogle Scholar
  5. Bässler, U. (1977). Sensory control of leg movement in the stick insect Carausius morosus. Biological Cybernetics, 25, 61–72.CrossRefGoogle Scholar
  6. Bässler, U. (1983). Neural basis of elementary behavior in stick insects. Berlin, Heidelberg, New York: Springer.Google Scholar
  7. Bässler, U. (1986). On the definition of central pattern generator and its sensory control. Biological Cybernetics, 54, 65–69.CrossRefGoogle Scholar
  8. Bernstein, N.A. (1975). Einige heranreifende Probleme der Regulation der Bewegungsakte. In N.A. Bernstein (Ed.), Bewegungsphysiologie. Leipzig: Barth, (originally published 1957 ).Google Scholar
  9. Berthoz, A., Pavard, B., Young, L.R. (1975). Perception of linear horizontal self–motion induced by peripheral vision (linearvection). Basic characteristics and visual–vestibular interactions. Experimental Brain Research, 23, 471–489.Google Scholar
  10. Bizzi, E., Polit, A., Morasso, P. (1976). Mechanisms underlying achievement of final head position. Journal of Neurophysiology, 39, 435–444.PubMedGoogle Scholar
  11. Brooks, V.B., Cooke, J.D., Thomas, J.S. (1973). The continuity of movements. In R.B. Stein, K.G. Pearson, R.S. Smith, J.B. Redford (Eds.), Control of posture and locomotion. New York: Plenum.Google Scholar
  12. Brown, T.G. (1911). The intrinsic factors in the act of progression in the mammal. Proceedings of the Royal Society, 84B, 308–319.CrossRefGoogle Scholar
  13. Carlton, L.G. (1981). Processing of visual feedback information for movement control. Journal of Experimental Psychology: Human Perception and Performance, 7, 1019–1030.Google Scholar
  14. Carter, M.C. (1984). Simultaneous control of two rhythmic behaviors in the cat: locomotion and the paw-shake response. Unpublished doctoral dissertation, University of California, Los Angeles.Google Scholar
  15. Chase, R.A. (1965). An information-flow model of the organization of motor activity. I. Transduction, transmission and central control of sensory information. Journal of Nervous and Mental Disease, 140, 239–251.Google Scholar
  16. Clarac, F. (1981). Decapod crustacean leg coordination during walking. In C.F. Herreid C.R. Fourtner (Eds.), Locomotion and energetics in arthropods. New York: Plenum.Google Scholar
  17. Cohen, L. (1971). Synchronous bimanual movements performed by homologous and non-homologous muscles. Perceptual and Motor Skills, 32, 639–644.PubMedCrossRefGoogle Scholar
  18. Conrad, B., Brooks, V.B. (1974). Effects of dentate cooling on rapid alternating arm movements. Journal of Neurophysiology, 37, 792–804.Google Scholar
  19. Craik, K.J.W. (1974). Theory of the human operator in control system. I. The operator as an engineering system. British Journal of Psychology, 38, 56–61.Google Scholar
  20. Cruse, H. (1980). A quantitative model of walking incorporating central and peripheral influences: I. The control of the individual leg. Biological Cybernetics, 37, 131–136.Google Scholar
  21. Cruse, H. (1981). Biologische Kybernetik. Eine Einführung in die lineare und nichtlineare Systemtheorie. Weinheim: Verlag Chemie.Google Scholar
  22. Cruse, H. (1985a). Which parameters control the leg movement of a walking insect? I. Velocity control during the stance phase. Journal of Experimental Biology, 116, 343–355.Google Scholar
  23. Cruse, H. (1985b). Which parameters control the leg movement of a walking insect? II. The start of the swing phase. Journal of Experimental Biology, 116, 357–362.Google Scholar
  24. Cruse, H., Briiwer, M. (1987). The human arm as a redundant manipulator: the control of path and joint angles. Biological Cybernetics, 57, 137–144.Google Scholar
  25. Cruse, H., Müller, U. (1986). Two coupling mechanisms which determine the coordination of ipsilateral legs in the walking crayfish. Journal of Experimental Biology, 121, 349–369.Google Scholar
  26. Dean, J., Cruse, H. (1986). Evidence for the control of velocity as well as position in leg protraction and retraction by the stick insect. In H. Heuer C. Fromm (Eds.), Generation and modulation of action patterns. Berlin, Heidelberg, New York: Springer.Google Scholar
  27. Dean, J., Wendler, G. (1983). Stick insect locomotion on a walking wheel: interleg coordination of leg position. Journal of Experimental Biology, 103, 75–94.Google Scholar
  28. Delcomyn, F. (1981). Insect locomotion on land. In C.F. Herreid C.R. Fourtner (Eds.), Locomotion and energetics in arthropods. New York: Plenum.Google Scholar
  29. DiCaprio, R.A.,Clarac, F. (1981). Reversal of a walking leg reflex elicited by a muscle receptor. Journal of Experimental Biology, 90, 197–203.Google Scholar
  30. Feldman, A.G. (1966). Functional tuning of the nervous system with control of movement maintenance of a steady posture. HI. Mechanographic analysis of the execution by man of the simplest of motor tasks. Biophysics, 11, 766–775.Google Scholar
  31. Feldman, A.G. (1974a). Change of muscle length due to shift of the equilibrium point of the muscle- load system. Biophysics, 19, 544–548.Google Scholar
  32. Feldman, A.G. (1974b). Control of muscle length. Biophysics, 19, 766–771.Google Scholar
  33. Feldman, A.G. (1986). Once more on the equilibrium point hypothesis (model) for motor control. Journal of Motor Behavior, 18, 17–54.PubMedGoogle Scholar
  34. Forssberg, H., Grillner, S., Rossignol, S. (1975). Phase dependent reflex reversal during walking in chronic spinal cats. Brain Research, 85, 103–107.Google Scholar
  35. Goodwin, G.M., McCloskey, D.I., Matthews, P.B.C. (1972). The contribution of muscle afferents to kinesthesia shown by vibration–induced illusions of movement and by the effects of paralyzing joint afferents. Brain, 95, 705–748.PubMedCrossRefGoogle Scholar
  36. Graham, D. (1972). A behavioral analysis of the temporal organization of walking movements in the 1st instar and adult stick insect. Journal of Comparative Physiology, 81, 23–52.CrossRefGoogle Scholar
  37. Graham, D. (1977). Simulation of a model for the coordination of leg movement in free walking insects. Biological Cybernetics, 26, 187–198.CrossRefGoogle Scholar
  38. Graham, D. (1979). Effects of circum-oesophageal lesion on the behavior of the stick insect Carausius morosus. H Changes in walking coordination. Biological Cybernetics, 32, 147–152.Google Scholar
  39. Graham, D., Bässler, U. (1981). Effects of afference sign reversal on motor activity in walking stick insects (iCarausius morosus). Journal of Experimental Biology, 91, 179–193.Google Scholar
  40. Grillner, S. (1981). Control of locomotion in bipeds, tetrapods, and fish. In V.B. Brooks (Ed.), Handbook of physiology: Sec. 1. The nervous system: Vol. 2. Motor control, part 2. Bethesda, MD: American Physiological Society.Google Scholar
  41. Gunkel, M. (1962). Über relative Koordination bei willkürlichen menschlichen Gliederbewegungen. Pflügers Archiv für die gesamte Physiologie, 275, 472–477.CrossRefGoogle Scholar
  42. Haken, H., Kelso, J.A.S., Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51, 347–356.Google Scholar
  43. Hein, A., Held, R. (1962). A neural model for labile sensorimotor coordinations. In E.E. Bernhard, M.R. Kare (Eds.), Biological prototypes and synthetic systems I. New York: Plenum.Google Scholar
  44. Heuer, H. (1983). Bewegungslernen. Stuttgart: Kohlhammer.Google Scholar
  45. Heuer, H. (1988). Psychomotorik. In H. Spada (Ed.), Lehrbuch der Allgemeinen Psychologie. Bern: Huber.Google Scholar
  46. Heuer, H., Prinz, W. (1987). Initiierung und Steuerung von Handlungen und Bewegungen, In M. Amelang (Ed.), Bericht über den 35. Kongress der Deutschen Gesellschaft für Psychologie, Heidelberg, 1986. Göttingen: HogrefeGoogle Scholar
  47. Heuer, H., Wing, A.M. (1984). Doing two things at once: Process limitations and interactions. In M.M. Smyth A.M. Wing (Eds.), Psychology of human movement. London: Academic.Google Scholar
  48. Hopf, H.C., Handwerker, H., Hausmanns, J. (1967). Die rasche Willkürbewegung des Menschen. Untersuchungen zur zentralen Programmierung. Deutsche Zeitschrift für Nervenheilkunde, 191, 186–209.Google Scholar
  49. Hoyle, G. (1964). Exploration of neuronal mechanisms underlying behavior in insects. In R.F. Reiss (Ed.), Neural theory and modelling. Stanford: Stanford University Press.Google Scholar
  50. Hoyle, G. (1983). Muscles and their neural control. New York: Wiley.Google Scholar
  51. Hughes, O.M., Abbs, J.H. (1976). Labial-mandibular coordination in the production of speech. Implications for the operation of motor equivalence. Phonetica, 33, 199–221.Google Scholar
  52. Hull, C.L. (1952). A behavior system. New Haven: Yale University Press.Google Scholar
  53. Ingle, D.J. (1982). Organization of visuomotor behaviours in vertebrates. In D.J. Ingle, M.A. Goodale, R.J.W. Mansfield (Eds.), Analysis of visual behavior. Cambridge, MA: MIT Press.Google Scholar
  54. Jander, J.P. (1985). Mechanical stability in stick insects when walking straight and around curves. In M. Gewecke G. Wendler (Eds.), Insect locomotion. Berlin: Parey.Google Scholar
  55. Jones, B. (1974). Is proprioception important for skilled performance? Journal of Motor Behavior, 6, 33–45.Google Scholar
  56. Jordan, T.C. (1972). Characteristics of visual and proprioceptive response times in the learning of a motor skill. Quarterly Journal of Experimental Psychology, 24, 536–543.PubMedCrossRefGoogle Scholar
  57. Keele, S.W., Posner, M.I. (1968). Processing of visual feedback in rapid movements. Journal of Experimental Psychology, 77, 155–158.Google Scholar
  58. Kelso, J.A.S. (1986). Pattern formation in speech and limb movements involving many degrees of freedom. In H. Heuer C. Fromm (Eds.), Generation and modulation of action patterns. Berlin, Heidelberg, New York: Springer.Google Scholar
  59. Kelso, J.A.S., Kay, B.S.A. (1987). Information and control. In H. Heuer A.F. Sanders (Eds.), Perspectives on perception and action. Hillsdale, NJ: Erlbaum.Google Scholar
  60. Kelso, J.A.S., Stelmach, G.E. (1976). Central and peripheral mechanisms in motor control. In G.E. Stelmach (Ed.), Motor control: issues and trends. New York: Academic.Google Scholar
  61. Kelso, J.A.S., Southard, D.L., Goodman, D. (1979). On the co–ordination of two-handed movements. Journal of Experimental Psychology: Human Perception and Performance, 5, 229–238.Google Scholar
  62. Kelso, J.A.S., Holt, K.G., Kugler, P.N., Turvey, M.T. (1980). On the concept of coordinative structures as dissipative structures. II. Empirical lines of convergence. In G.E. Stelmach J. Requin (Eds.), Tutorials in motor behavior. Amsterdam: North-Holland.Google Scholar
  63. Kelso, J.A.S., Schöner, G., Scholz, J.P., Haken, H. (1987). Phase-locked modes, phase transitions and component oscillators in biological motion. Physica Scripta, 35, 79–98.Google Scholar
  64. Kugler, P.N., Kelso, J.A.S., Turvey, M.T. (1980). On the concept of coordinative structures as dissipative structures. I. Theoretical line. In G.E. Stelmach I. Requin (Eds.), Tutorials in motor behavior. Amsterdam: North–Holland.Google Scholar
  65. Kugler, P.N., Kelso, J.A.S., Turvey, M.T. (1982). On coordination and control in naturally developing systems. In J.A.S. Kelso J.E. Clarke (Eds.), The development of movement control and coordination. New York: Wiley.Google Scholar
  66. Land, M.F. (1972). Stepping movements made by jumping spiders during turns mediated by the lateral eyes. Journal of Experimental Biology, 57, 15–40.PubMedGoogle Scholar
  67. Lashley, K.S. (1917). The accuracy of movement in the absence of excitation from the moving organ. American Journal of Physiology, 43, 169–194.Google Scholar
  68. Lashley, K.S. (1951). The problem of serial order in behavior. In L.A. Jeffress (Ed.), Cerebral mechanisms in behavior. The Hixon symposium. New York: Wiley.Google Scholar
  69. Laszlo, J.I. (1967). Training of fast tapping with reduction of kinesthetic, tactile, visual, and auditory sensations. Quarterly Journal of Experimental Psychology, 19, 344–349.PubMedCrossRefGoogle Scholar
  70. Lee, D.N., Lishman, J.R. (1975). Visual proprioceptive control of stance. Journal of Human Movement Studies, 1, 87–95.Google Scholar
  71. Lee, D.N., Young, D.S. (1983). Visual timing of interceptive action. In D.J. Ingle, M. Jeannerod, D.N. Lee Brain mechanisms and spatial vision. Dordrecht: Nijhoff.Google Scholar
  72. Lee, D.N., Young, D.S. (1986). Gearing action to the environment. In H. Heuer C. Fromm (Eds.), Generation and modulation of action patterns. Berlin, Heidelberg, New York: Springer.Google Scholar
  73. Lee, D.N., Lishman, J.R., Thomson, J.A. (1982). Visual regulation of gait in long jumping. Journal of Experimental Psychology: Human Perception and Performance, 8, 448–459.Google Scholar
  74. Lee, D.N., Young, D.S., Reddish, E., Lough, S., Clayton, T.M.H. (1983). Visual timing in hitting an accelerating ball. Quarterly Journal of Experimental Psychology, 35a, 333–346.Google Scholar
  75. MacKay, D.G. (1986). Self–inhibition and the disruptive effects of internal and external feedback in skilled behavior. In H. Heuer C. Fromm (Eds.), Generation and modulation of action patterns. Berlin, Heidelberg, New York: Springer.Google Scholar
  76. MacNeilage, P.F. (1980). Distinctive properties of speech motor control. In G.E. Stelmach J. Requin (Eds.), Tutorials in motor behavior. Amsterdam: North-Holland.Google Scholar
  77. Marteniuk, R.G., MacKenzie, C.L. (1980). A preliminary theory of two-hand coordination control. In G.E. Stelmach J. Requin (Eds.), Tutorials in motor behavior. Amsterdam: North-Holland.Google Scholar
  78. Marteniuk, R.G., MacKenzie, C.L., Baba, D.M. (1984). Bimanual movement control: information processing and interaction effects. Quarterly Journal of Experimental Psychology, 36a, 335–365.Google Scholar
  79. Meyer, D.E., Smith, J.E.K., Wright, C.E. (1982). Models for the speed and accuracy of aimed movements. Psychological Review, 89, 449–482.Google Scholar
  80. Miller, G.A., Galanter, E., Pribram, K.H. (1960). Plans and the structure of behavior. New York: Holt.CrossRefGoogle Scholar
  81. Monsell, S. (1986). Programming of complex sequences: evidence from the timing of rapid speech and other productions. In H. Heuer C. Fromm (Eds.), Generation and modulation of action patterns. Berlin, Heidelberg, New York: Springer.Google Scholar
  82. Nashner, L., Berthoz, A. (1978). Visual contribution to rapid motor responses during postural control. Brain Research, 150, 403–407.Google Scholar
  83. Navas, F., Stark, L. (1968). Sampling or intermittency in hand control system dynamics. Biophysics Journal, 8, 252–302.PubMedGoogle Scholar
  84. Nielsen, T.I. (1963). Volition: a new approach. Scandinavian Journal of Psychology, 4, 225–230.CrossRefGoogle Scholar
  85. Partridge, L.D. (1979). Muscle properties: a problem for the motor controller physiologist. In R.E. Talbott D.R. Humphrey (Eds.), Posture and movement. New York: Raven.Google Scholar
  86. Pearson, K.G., lies, F.J. (1973). Nervous mechanisms underlying intersegmental coordination of leg movements during walking in the cockroach. Journal of Experimental Biology, 58, 125–144.Google Scholar
  87. Pew, R.W. (1966). Acquisition of hierarchical control over the temporal organization of skill. Journal of Experimental Psychology, 71, 764–771.PubMedCrossRefGoogle Scholar
  88. Poulton, E.C. (1957). On prediction in skilled movements. Psychological Bulletin, 54, 467–478.PubMedCrossRefGoogle Scholar
  89. Poulton, E.C. (1966). Tracking behavior. In E.A. Bilodeau (Ed.), Acquisition of skill. New York: Aca–demic.Google Scholar
  90. Prinz, W., Sanders, A.F. (1984). Preface. In W. Prinz A.F. Sanders (Eds.), Cognition and motor processes. Berlin, Heidelberg, New York: Springer.Google Scholar
  91. Roeck, E. (1977). Verzögerte auditive Rückkopplung (VAR) der Lautsprache. In E. Roeck (Ed.), Verzögerte auditive Rückkopplung (VAR). Bern: Huber.Google Scholar
  92. Rosenbaum, D.A. (1985). Motor programming: a review and a scheduling theory. In H.Heuer, U. Kleinbeck, K.–H. Schmidt (Eds.), Motor behavior. Programming, control, and acquisition. Berlin, Heidelberg, New York: Springer.Google Scholar
  93. Salmoni, A.W., Schmidt, R.A., Walter, C.B. (1984). Knowledge of results and motor learning: a review and critical reappraisal. Psychological Bulletin, 95, 355–386.Google Scholar
  94. Saltzman, E. (1986). Task dynamic coordination of the speech articulators. A preliminary model. In H.Heuer C. Fromm (Eds.), Generation and modulation of action patterns. Berlin, Heidelberg, New York: Springer.Google Scholar
  95. Saltzman, E., Kelso, J.A.S. (1987). Skilled actions: a task–dynamic approach. Psychological Review, 94, 84–106.Google Scholar
  96. Schmidt, R.A. (1980). On the theoretical status of time in motor program representations. In G.E. Stelmach J. Requin (Eds.), Tutorials in motor behavior. Amsterdam: North-Holland.Google Scholar
  97. Schmidt, R.A. (1982). Motor control and learning: a behavioral emphasis. Champaign: Human Kinetics.Google Scholar
  98. Schmidt, R.A. (1985a). The search for invariance in skilled movement behavior. Research Quarterly for Exercises and sport, 56, 188–200.Google Scholar
  99. Schmidt, R.A. (1987). Motor and action perspectives on motor behavior. In O. Meijer K. Roth (Eds.), Complex movement behavior: the motor action controversy. Amsterdam: North-Holland.Google Scholar
  100. Schmidt, R.A. (1988). Motor control and learning: a behavioral emphasis ( 2nd ed. ). Champaign: Human Kinetics.Google Scholar
  101. Schmidt, R.A., Christenson, R., Rogers, P. (1975). Some evidence for the independence of recall and recognition in motor behavior. In D.M. Landers, D.V. Harris, R.W. Christian (Eds.), Psychology of motor behavior and sport I I. State College, PA: Penn State HPER Series.Google Scholar
  102. Schmidt, R.A., McGown, C., Quinn, J.T., Hawkins, B. (1986). Unexpected inertial loading in rapid reversal movements: violations of equifinality. Human Movement Science, 5, 263–273.Google Scholar
  103. Schöner, G., Haken, H., Kelso, J.A.S. (1986). A stochastic theory of phase transitions in human hand movements. Biological Cybernetics, 54, 247–257.Google Scholar
  104. Seiverston, A.I. (1980). Are central pattern generators understandable? Behavioral and Brain Sciences, 3, 535–571.CrossRefGoogle Scholar
  105. Shapiro, D.C., Zemicke, R.F., Gregor, R.J., Diestel, J.D. (1981). Evidence for generalized motor programs using gait pattern analysis. Journal of Motor Behavior, 13, 33–47.Google Scholar
  106. Shumway Cook, A., Woollacott, M.H. (1985). The growth of stability: postural control from a developmental perspective. Journal of Motor Behavior, 17, 131–147.Google Scholar
  107. Sittig, K. (1986). Kinesthesis and motor control. Unpublished doctoral dissertation, University of Utrecht Google Scholar
  108. Stein, R.B. (1982). What muscle variable(s) does the nervous systems control in limb movements? Behavioral and Brain Sciences, 5, 535–577.CrossRefGoogle Scholar
  109. Stimpel, E. (1933). Der Wurf. Neue Psychologische Studien, 9, 105–138.Google Scholar
  110. Taub, E. (1968). Prism compensation as a learning phenomenon: a phylogenetic perspective. In S.J. Freedman (Ed.), The neuropsychology of spatially oriented behavior. Homewood, IL: Dorsey.Google Scholar
  111. Taub, E. (1976). Movements in nonhuman primates deprived of somatosensory feedback. Exercise and Sport Sciences Reviews, 4, 335–374.PubMedCrossRefGoogle Scholar
  112. Taub, E., Berman, A.J. (1968). Movement and learning in the absence of sensory feedback. In S.J. Freedman (Ed.), The neuropsychology of spatially oriented behavior. Homewood, IL: Dorsey.Google Scholar
  113. Taub, E., Goldberg, I.A., Taub, P. (1975). Deafferentation in monkeys: pointing at a target without visual feedback. Experimental Neurology, 46, 178–186.PubMedCrossRefGoogle Scholar
  114. Taylor, F.V., Birmingham, H.P. (1948). Studies of tracking behavior. H, The acceleration of quick manual corrective responses. Journal of Experimental Psychology, 38, 783–795.Google Scholar
  115. Turvey, M.T. (1977). Preliminaries of a theory of action with respect to vision. In R. Shaw J. Bransford (Eds.), Perceiving, acting, and knowing. Hillsdale, NJ: Erlbaum.Google Scholar
  116. Viviani, P. (1986). Do units of motor action really exist? In H. Heuer C. Fromm (Eds.), Generation and modulation of action patterns. Berlin, Heidelberg, New York: Springer.Google Scholar
  117. von Holst, E. (1939). Die relative Koordination als Phänomen und als Methode zentralnervöser Funktionsanalyse. Ergebnisse der Physiologie, 42, 228–306.Google Scholar
  118. Welch, R.B. (1978). Perceptual modification: adapting to altered sensory environments. New York: Academic.Google Scholar
  119. Wendler, G. (1964). Laufen und Stehen der Stabheuschrecke: Sinnesborsten in den Beingelenken als Glieder von Regelkreisen. Zeitschrift für vergleichende Physiologie, 48, 198–250.CrossRefGoogle Scholar
  120. Wilson, D.M. (1968). The flight-control system of the locust. Scientific American, 218% 83–90.Google Scholar
  121. Wing, A.M. (1977). Perturbations of auditoiy feedback delay and the timing of movement. Journal of Experimental Psychology: Human Perception and Performance, 3, 175–186.PubMedCrossRefGoogle Scholar
  122. Zelaznik, H.N., Hawkins, B., Kisselburgh, L. (1983). Rapid visual feedback processing in single-ai-ming movements. Journal of Motor Behavior, 15, 217–236.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

There are no affiliations available

Personalised recommendations