Advertisement

The Role of the Frontal Lobes in Child Psychiatric Disorders

  • A. Rothenberger

Abstract

A large number of clinical and experimental studies primarily devoted to the investigation of the frontal cortex and its functional properties have been conducted over the last decade. This surge of interest has not been restricted to animal experiments and brain damage studies carried out in departments of neurology and neurosurgery; efforts have also been invested in adult psychiatry, a research field which has become increasingly concerned with the functional role of the frontal lobes in various psychopathological phenomena (Weinberger 1988; Malloy 1987).

Keywords

Frontal Cortex Anorexia Nervosa Frontal Lobe Positron Emission Tomographic Electrical Brain Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375PubMedCrossRefGoogle Scholar
  2. Bäumler G (1985) Farbe-Wort-Interferenztest (FWIT). Hogrefe, GöttingenGoogle Scholar
  3. Bruneau N, Roux S, Garreau B, Lelord G (1985) Frontal auditory evoked potentials and augmenting-reducing. Electroencephalogr Clin Neurophysiol 62:364–371PubMedCrossRefGoogle Scholar
  4. Bruneau N, Garreau B, Barthélémy C, Martineau J, Muh J, Lelord G (1990) Clinical, electrophysiological, and biochemical markers and monoaminergic hypotheses in autism, this volume, pp 217–234Google Scholar
  5. Chase TN, Foster NL, Fedio P, Brooks R, Mansi L, Kessler R, DiChiro G (1984) Gilles de la Tourette syndrome: Studies with the fluorine-18-labeled fluorodeoxyglucose positron emission tomographic method. Ann Neurol (Suppl) 15:175CrossRefGoogle Scholar
  6. Chelune GJ, Baer RA (1986) Developmental norms for the Wisconsin Card Sorting Test. J Clin Exp Neuropsychol 8:219–228PubMedCrossRefGoogle Scholar
  7. Chelune GJ, Ferguson W, Koon R, Dickey TO (1986) Frontal lobe disinhibition in attention deficit disorder. Child Psychiatry Hum Dev 16:221–234PubMedCrossRefGoogle Scholar
  8. Ciesielski KT, Courchesne E, Elmasian R (in press) Effects of focused selective attention tasks on event-related potentials in autistic and normal individuals. Electroencephalogr Clin NeurophysiolGoogle Scholar
  9. Cotman CW, Iversen LL (1987) Excitatory amino acids in the brain — focus in NMDA receptors. Trends Neurosci 10:263–265CrossRefGoogle Scholar
  10. Cotman CW, Monaghan DT, Ottersen OP, Storm-Mathisen J (1987) Anatomical organization of excitatory amino acids receptors and their pathways. Trends Neurosci 10:273–280CrossRefGoogle Scholar
  11. Deecke L, Kornhuber HH, Lang W, Lang M, Schreiber H (1985) Timing function of the frontal cortex in sequential motor and learning tasks. Hum Neurobiol 4:143–154PubMedGoogle Scholar
  12. Delgado JMR (1979) Inhibitory functions in the neostriatum. In: Divac I, Öberg RGE (eds) The neostriatum. Pergamon, Oxford, pp 241–261Google Scholar
  13. Devinsky O (1983) Neuroanatomy of Gilles de la Tourette’s syndrome. Possible midbrain involvement. Arch Neurol 40:508–514PubMedGoogle Scholar
  14. Eccles JC (1982) The initiation of voluntary movements by the supplementary motor area. Arch Psychiat Nervenkr 231:423–441PubMedCrossRefGoogle Scholar
  15. Finley WW (1984) Biofeedback of very early potentials from the brainstem. In: Elbert T, Rockstroh B, Lutzenberger W, Birbaumer N (eds) Self-regulation of the brain and behavior. Springer, Berlin Heidelberg New York Tokyo, pp 143–163CrossRefGoogle Scholar
  16. Foster N (1983) NIH TS PET Scan project. Tourette Syndrome Association Newsletter X (Summer): 1Google Scholar
  17. Fuster JM (1989) The prefrontal cortex. 2nd edn. Raven, New YorkGoogle Scholar
  18. Garreau B (1985) Étude des activités évoqués du tronc cérébral et de la région frontale chez l’enfant autistique. Thesis, Université P. et M. Curie, ParisGoogle Scholar
  19. Golden CJ (1981) The Luria-Nebraska Children’s Battery: theory and formulation. In: Hynd GW, Obrzut JE (eds) Neuropsychological assessment and the school-age child. Grune and Stratton, New York, pp 277–302Google Scholar
  20. Goldman PS, Alexander GE (1977) Maturation of prefrontal cortex in the monkey revealed by local reversible cryogenic depression. Nature (London) 267:613–615CrossRefGoogle Scholar
  21. Häfner HH (1955) Störung des Plan- und Entwurfvermögens bei Stirnhirnläsionen. Arch Psychiatr Z Neurol 193:569–582Google Scholar
  22. Häfner HH (1957) Psychopathologie des Stirnhirns 1939–1955. Fortschr Neurol Psychiatr 25:205–252PubMedGoogle Scholar
  23. Heaton RK (1981) Wisconsin Card Sorting Test Manual. FL: Psychological Assessment Resources, Odessa, FLGoogle Scholar
  24. Herholz K, Krieg JC, Emrich HM, Pawlik G, Beil C, Pirke KM, Pahl JJ, Wagner R, Wienhard K, Ploog D, Heiss WD (1987) Regional cerebral glucose metabolism in anorexia nervosa measured by positron emission tomography. Biol Psychiatry 22:43–51PubMedCrossRefGoogle Scholar
  25. Jouandet M, Gazzaniga MS (1979) The frontal lobes. In: Gazzaniga MS (ed) Handbook of behavioral neurobiology. vol. 2 Neuropsychology, Plenum, New York, pp 25–59Google Scholar
  26. Karrer R, Ivins J (1976) Steady potentials accompanying perception and response in mentally retarded and normal children. In: Karrer R (ed) Developmental psychophysiology of mental retardation. Thomas, Springfield, pp 361–417Google Scholar
  27. Karrer R, Warren C (1979) Functional organization of the brain in the mentally retarded: evidence from event-related potentials. In: Obiols J, Ballus C, Gonzales Monclus E, Pujol J (eds) Biological psychiatry today. Elsevier, Amsterdam, pp 1350–1355Google Scholar
  28. Kohlmeyer K, Lehmkuhl G, Poustka F (1983) Computed tomography of anorexia nervosa. Am J Neuroradiol 4:437–438PubMedGoogle Scholar
  29. Krauthamer GM (1979) Sensory functions of the neostriatum. In: Divac I, Öberg RGE (eds) The neostriatum. Pergamon, Oxford, pp 263–289Google Scholar
  30. Lang W, Lang M, Kornhuber A, Kornhuber HH (1983) Human visuomotor learning and cerebral potentials with inverted and distorted hand tracking. Preliminary poster reports, EPIC VII, Florence, p 89Google Scholar
  31. Libet B, Wright EW, Gleason CA (1983) Preparation- or intention-to-act, in relation to pre-event potentials recorded at the vertex. Electroencephalogr Clin Neurophysiol 56, 367–372PubMedCrossRefGoogle Scholar
  32. Lou HC, Henriksen L, Bruhn P (1984) Focal cerebral hypoperfusion in children with dysphasia and/or attention deficit disorder. Arch Neurol 41:825–829PubMedGoogle Scholar
  33. Malloy P (1987) Frontal lobe dysfunction in obsessive-compulsive disorder. In: Perecman E (ed) The frontal lobes revisited. IRBN Press, New York, pp 207–223Google Scholar
  34. Mattes JA (1980) The role of frontal lobe dysfunction in childhood hyperkinesis. Compr Psychiatry 21:358–369PubMedCrossRefGoogle Scholar
  35. Milner B, Petrides M (1984) Behavioural effects of frontal lobe lesions in man. Trends Neurosci 7:403–407CrossRefGoogle Scholar
  36. Nasrallah HA, Loney J, Olson SC, McCalley-Whitters M, Kramer J, Jacoby CG (1986) Cortical atrophy in young adults with a history of hyperactivity in childhood. Psychiatry Res 17:241–246PubMedCrossRefGoogle Scholar
  37. Niedermeyer E, Lopes da Silva F (eds) (1982) Electroencephalography. Urban und Schwarzenberg, MunichGoogle Scholar
  38. Obeso JA, Rothwell JC, Marsden CD (1982) The neurophysiology of Tourette syndrome. In: Friedhoff AJ, Chase TN (eds) Gilles de la Tourette syndrome. Raven, New York, pp 105–114 (Advances in neurology, vol 35)Google Scholar
  39. Olton DS (1989) Frontal cortex, timing, and memory. Neuropsychologia 27:121–130PubMedCrossRefGoogle Scholar
  40. Passler MA, Isaac W, Hynd GW (1985) Neuropsychological development of behaviour attributed to frontal lobe functioning in children. Dev Neuropsychology 1:349–370CrossRefGoogle Scholar
  41. Penfield W, Jasper H (1954) Epilepsy and the functional anatomy of the brain. Brown, BostonGoogle Scholar
  42. Perecman E (ed) (1987) The frontal lobes revisited. IRBN Press, New YorkGoogle Scholar
  43. Pirke KM, Ploog D (1986) Psychobiology of anorexia nervosa. In: Wurtman RJ, Wurtman JJ (eds) Nutrition and the brain, vol 7, Raven, New York, pp 167–198Google Scholar
  44. Porrino LJ, Lucignani G (1987) Different patterns of local brain energy metabolism associated with high and low doses of methylphenidate. Relevance to its action in hyperactive children. Biol Psychiatry 22:126–138PubMedCrossRefGoogle Scholar
  45. Reines S, Goldman JM (1980) The development of the brain. Thomas, SpringfieldGoogle Scholar
  46. Rockstroh B, Elbert T, Birbaumer N, Lutzenberger W (1982) Slow brain potentials and behavior, Urban and Schwarzenberg, MunichGoogle Scholar
  47. Rockstroh B, Elbert T, Lutzenberger W, Birbaumer N (1990) Biofeedback: evaluation and therapy in children with attentional dysfunctions. This volume, pp. 345–357Google Scholar
  48. Roland PE, Larsen B, Lassen NA, Skinhoj E (1980) Supplementary motor area and other cortical areas in organization of voluntary movements in man. J Neurophysiol 43:118–136PubMedGoogle Scholar
  49. Rothenberger A, Kemmerling S (1982) Bereitschaftspotential in children with multiple tics and Gilles de la Tourette syndrome. In: Rothenberger A (ed) Event-related potentials in children. Elsevier, Amsterdam, pp 257–270 (Developments in neurology, vol 6)Google Scholar
  50. Rothenberger A (1984) Bewegungsbezogene Veränderungen elektrischer Hirnaktivität bei Kindern mit multiplen Tics und Gilles de la Tourette Syndrom. Postdoctoral thesis, University of HeidelbergGoogle Scholar
  51. Rothenberger A (1986a) Aphasie bei Kindern. Fortschr Neurol Psychiatr 54:92–98PubMedCrossRefGoogle Scholar
  52. Rothenberger A, Kemmerling S, Schenk GK, Zerbin D, Voss M (1986b) Movement-related potentials in children with hypermotoric behaviour. In: McCallum WC, Zappoli R, Denoth F (eds) Cerebral psychophysiology: studies in even-related potentials (EEG Suppl 38), Elsevier, Amsterdam, pp 496–498Google Scholar
  53. Rothenberger A, Reiser A, Grote I, Woerner W (1987) Modulation of sensory input in infants at different psychosocial and organic risk. In: Kutas M, Renault B (eds) ICON IV, Conference Proceedings, Paris-Dourdan, pp 85–88Google Scholar
  54. Rothenberger A (1988a) Treatment of tic-disorders with dopamine receptor blockers. Less frontal lobe activity necessary to control the tics. Psychopharmacology 96 (Suppl): 153Google Scholar
  55. Rothenberger A (1988b) Klassifikation und neurobiologischer Hintergrund des hyperkinetischen Syndroms. In: Franke U (ed) Das aggressive und hyperkinetische Kind in der Therapie. Springer, Berlin Heidelberg New York Tokyo, pp 5–26Google Scholar
  56. Rothenberger A, Woerner W, Dumais-Huber C, Eisert H-G, Etchepareborda M, Niemeyer J, Stratmann F, Schmidt MH (1989) Zentralnervöse Kontrollmechanismen und kinderpsychiatrische Störungen. 21st Meeting of the Deutsche Gesellschaft für Kinder- und Jugendpsychiatrie, MunichGoogle Scholar
  57. Sanides F (1964) The cyto-myeloarchitecture of the frontal lobe and its relation to phylogenetic differentiation of the cerebral cortex. J Hirnforsch 6:269–291Google Scholar
  58. Sanides F (1971) Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex development. In: Noback CR, Montana W (eds) Advances in primatology, vol I. Appleton-Century-Crofts, New York, pp 137–208Google Scholar
  59. Sanides F (1972) Representations in the cerebral cortex and its areal lamination patterns. In: GF Bourne (ed) Structure and function of nervous tissue, vol 5. Academic, New York pp 329–453Google Scholar
  60. Skinner JE (1978) A neurophysiological model for regulation of sensory input to cerebral cortex. In: Otto D (ed) Multidisciplinary perspectives in event-related brain potential research. U.S. Environmental Protection Agency, Washington DC, pp 616–625Google Scholar
  61. Stamm JS, Kreder SV (1979) Minimal brain dysfunction: psychological and neurophysiological disorders in hyperkinetic children. In: Gazzaniga MS (ed) Neuropsychology. Plenum, New York, pp 119–150 (Handbook of behavioral neurobiology, vol 2)Google Scholar
  62. Stuss DT, Benson DF (1986) The frontal lobes. Raven, New YorkGoogle Scholar
  63. Stuss DT, Benson DF (1987) The frontal lobes and control of cognition and memory. In: Perecman E (ed) The frontal lobes revisited, IRBN Press, New York, pp 141–158Google Scholar
  64. Tassin JP (1980) Approche du rôle fonctionnel du système méso-cortical dopaminergique. Psychologie Médicale 12:43–64Google Scholar
  65. Unis AS, McMahon WM, Franz D (1986) A common neuropharmacological basis for the efficacy of tricyclic antidepressants, psychostimulants and Clonidine in attention deficit disorder with hyperactivity. Scientific proceedings of the annual meeting of the Am Acad Child Adolesc Psychiatry 2:21Google Scholar
  66. Weinberger DR (1988) Schizophrenia and the frontal lobe. Trends Neurosci 11:367–370PubMedCrossRefGoogle Scholar
  67. Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation in the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, Oxford, pp 3–70Google Scholar
  68. Zametkin A, Nordahl T, Gross M et al. (1986) Brain metabolism in hyperactive children. Scientific proceedings of the annual meeting of the Am Acad Child Adolesc Psychiatry 2:23Google Scholar
  69. Zametkin AJ, Rapoport JL (1987) Neurobiology of attention deficit disorder with hyperactivity: where have we come in 50 years? J Amer Acad Child Adol Psychiatry 26:676–686CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • A. Rothenberger

There are no affiliations available

Personalised recommendations