Advertisement

Role of Environmental Variables, Specifically Organic Compounds and Micronutrients, in the Growth of the Chrysophyte Aureococcus Anophagefferens

  • Susan Dzurica
  • Cindy Lee
  • Elizabeth M. Cosper
  • Edward J. Carpenter
Part of the Coastal and Estuarine Studies book series (COASTAL, volume 35)

Abstract

During the summer of 1985, certain Long Island coastal embayments experienced dense phytoplankton blooms. These blooms, popularly called the “brown tide”, grew to such extreme cell densities that the subsequent increased light attenuation caused the devastation of local eelgrass beds. The high cell densities also interfered with proper grazing by the commercially valuable bay scallop (Cosper et al., 1987). These blooms returned during the summers of 1986 and, to a lesser degree, 1987.

Keywords

Citric Acid Glutamic Acid Sole Nitrogen Source Poison Control Brown Tide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antia, N.J., D.J. Berland and S.Y. Maestrini. 1975. Comparative evaluation of certain organic and inorganic sources for phototrophic growth of marine microalgae. J. Mar. Biol. Ass. U.K. 55: 519–539.Google Scholar
  2. Billen, G., C. Joiris, J. Wijnant and G. Gillain. 1980. Concentration and microbiological utilization of small organic molecules in the Scheldt estuary, the Belgian coastal zone of the North Sea and the English Channel. Estuar. Coast. Mar. Sci. II: 279–294.Google Scholar
  3. Brand, L.E. 1986. Nutrition and culture of autotrophic ultraplankton and picoplankton. In: Photosynthetic Picoplankton. T. Piatt and W.K. Li (eds.). Can. Bull. Fish. Aquat. Sci. 214: 205–233.Google Scholar
  4. Brand, L.E., R.R.L. Guillard and L.S. Murphy. 1981. A method for the rapid and precise determination of acclimated phytoplankton reproduction rates. J. Plankton Res. 3: 193–201.CrossRefGoogle Scholar
  5. Butler, E.I., S. Knox and M.I. Liddicoat. 1979. The relationship between inorganic and organic nutrients in sea water. J. Mar. Biol. Ass. U.K. 59: 239–250.Google Scholar
  6. Carpenter, E.J., C.C. Remsen and S.W. Watson. 1972. Utilization of urea by marine phytoplankters. Limnol. Oceanogr. 17: 265–269.Google Scholar
  7. Coleman, A.W., M.J. Maguire and J.R. Colman. 1981. Mithramycin and 4’-6-diamidino-2-phenylindole (DAPI) — DNA staining for fluorescence microspectrophotometric measurement of DNA in nuclei, plasmid, and virus particles. J. Histochem. Cytochem. 29: 959–968.Google Scholar
  8. Cosper, E.M. 1987. Culturing the brown tide alga. App. Phycol. Forum 4: 3–5.Google Scholar
  9. Cosper, E.M., W.C. Dennison, E.J. Carpenter, V.M. Bricelj, J.G. Mitchell, S.H. Kuenster, D. Colflesh and M. Dewey. 1987. Recurrent and persistent “brown tide” blooms perturb coastal marine ecosystem. Estuaries. 10: 284–290.CrossRefGoogle Scholar
  10. Crawford, C.C., J.E. Hobbie and K.L. Webb. 1974. The utilization of dissolved free amino acids by estuarine microorganisms. Ecology. 55: 551–563.CrossRefGoogle Scholar
  11. Dawson, R. and K. Gocke. 1978. Heterotrophic activity in comparison to free amino acid concentrations in Baltic Sea water samples. Oceanologica Acta. 1: 45–54.Google Scholar
  12. Droop, M.R. 1967. A procedure for routine purification of algal cultures with antibiotics. Brit. Phycol. Bull. 3: 295–297.Google Scholar
  13. Dzurica, S. 1988. Role of environmental variables, specifically organic compounds and micronutrients, in the growth of Aureococcus anophagefferens, the brown tide microalga. M.S. Thesis, Marine Sciences Research Center, State University of New York, Stony Brook, N.Y.Google Scholar
  14. Flynn, K.J. and I. Butler. 1986. Nitrogen sources for the growth of marine microalgae: role of dissolved free amino acids. Mar. Ecol. Prog. Ser. 34: 281–304.Google Scholar
  15. Fuhrman, J.A. 1987. Close coupling between release and uptake of dissolved free amino acids in seawater studied by an isotope dilution approach. Mar. Ecol. Prog. Ser., 37: 45–52.Google Scholar
  16. Guillard, R.R.L. and J.H. Ryther. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8: 229–239.Google Scholar
  17. Hobbie, J.E. and C.C. Crawford. 1969. Respiration corrections for bacterial uptake of dissolved organic compounds in natural waters. Limnol. Oceanogr. 14: 528–533.Google Scholar
  18. Hollibaugh, J.T. 1976. The biological degradation of arginine and glutamic acid in seawater in relation to the growth of phytoplankton. Mar. Biol. 36: 303–312.Google Scholar
  19. Horrigan, S.G. and J.J. McCarthy. 1981. Urea uptake by phytoplankton at various stages of nutrient depletion. J. Plank. Res. 3 (3): 403–414.CrossRefGoogle Scholar
  20. Jones, B.N., S. Paabo and S. Stein. 1981. Amino acid analysis and enzymatic sequence determination of peptides by an improved o-phthaldialdehyde pre-column labeling procedure. J. Liq. Chromatogr. 4: 565–586.Google Scholar
  21. Jørgensen, N.O.G. 1982. Heterotrophic assimilation and occurrence of dissolved free amino acids in a shallow estuary. Mar. Ecol. Prog. Ser. 8: 145–159.Google Scholar
  22. Keller, M.D. and R.R.L. Guillard. 1985. Factors significant to marine dinoflagellate culture. In: Toxic Dinoflagellates. D.M. Anderson, A.W. White and D.G. Baden (eds.). Elsevier. p. 113–116.Google Scholar
  23. King, G.M. and T. Berman. 1984. Potential effects of isotopic dilution on apparent respiration in 14-C heterotrophy experiments. Mar. Ecol. Prog. Ser. 19: 175–189.Google Scholar
  24. Larsson, U. and A. Hagstrom. 1978. Fractionated phytoplankton primary production, exudate release and bacterial production in a Baltic eutrophication gradient. Mar. Biol. 67: 57–70.Google Scholar
  25. Lee, C. and J.L. Bada. 1977. Dissolved amino acids in the equatorial Pacific, the Sargasso Sea and Biscayne Bay. Limnol. Oceanogr. 22: 502–510.Google Scholar
  26. Lively, J.S., Z. Kaufman and E.J. Carpenter. 1983. Phytoplankton ecology of a barrier island estuary: Great South Bay, New York. Est. Coast. Shelf Sci. 16: 51–68.Google Scholar
  27. Mahoney, J.B. and J.J.A. McLaughlin. 1977. The association of phytoflagellate blooms in lower New York Bay with hypertrophication. J. exp. mar. Biol. Ecol. 28: 53–65.Google Scholar
  28. McLachlan, J. 1973. Growth media — marine. In: Handbook of Phycological Methods, Culture Methods and Growth Measurements. J.R. Stein (ed.). Cambridge University Press. Cambridge, p. 25–51.Google Scholar
  29. Mitamura, O. and Y. Saijo. 1975. Decomposition of urea associated with photosynthesis of phytoplankton in coastal waters. Mar. Biol. 30 (1): 67–72.CrossRefGoogle Scholar
  30. Mopper, K. and P. Lindroth. 1982. Diel and depth variations in dissolved free amino acids and ammonium in the Baltic Sea determined by shipboard HPLC analysis. Limnol. Oceanogr. 27: 336–347.Google Scholar
  31. Morel, F.M.M. 1983. Principles of Aquatic Chemistry. John Wiley & Sons. New York, pp 446.Google Scholar
  32. Nielscm, A.H. and R.A. Lewin. 1974. The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry. Phycologia 13: 227–264.CrossRefGoogle Scholar
  33. North, B.B. and G.C. Stephens. 1967. Uptake and assimilation of amino acids by Platymonas. Biol. Bull. 13 3: 391–400.CrossRefGoogle Scholar
  34. Price, N.M. and P.J. Harrison. 1988. Uptake of urea C and urea N by the coastal marine diatom Thalassiosira pseudonana. Limnol. Oceanogr. 33: 528–537.Google Scholar
  35. Provasoli, L., J.J.A. McLaughlin and M.R. Droop. 1957. The development of artificial media for marine algae. Archiv fur Mikrobiologie. Bd. 25: 392–428.Google Scholar
  36. Ryther, J.H. and W.M. Dunstan. 1971. Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science 171: 1008–1013.PubMedCrossRefGoogle Scholar
  37. Sieburth, J.McN., P.W. Johnson and P.E. Hargraves. 1988. Ultrastructure and ecology of Aureococcus anophagefferens gen. et sp. nov. (Chrysophyceae); the dominant picoplankter during a bloom in Narragansett Bay, Rhode Island, summer 1985. J. Phycol. 24: 416–425.CrossRefGoogle Scholar
  38. Sillen, L.G. and A.E. Martell. 1964. Stability Constants of Metal-Ion Complexes. Burlington House. London.Google Scholar
  39. Strathman, R.R. 1967. Estimating the organic content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12: 411–418.Google Scholar
  40. Wheeler, P.A., B.B. North and G.C. Stephens. 1974 a. Amino acid uptake by marine phytoplankton and algae in aquatic ecosystems. Ecology. 47(3): 447–464.Google Scholar
  41. Wheeler, P.A., B.B. North and G.C. Stephens. 1974 b. Amino acid uptake by marine phytoplankters. Limnol. Oceanogr. 19: 249–259.Google Scholar
  42. Williams, P.J.LeB. 1970. Heterotrophic utilization of dissolved organic compounds in the sea. J. Mar. Biol. Ass. UK. 50: 859–870.Google Scholar
  43. Wright, R.T. and J.E. Hobbie. 1966. Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecol. 47: 447–464.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Susan Dzurica
    • 1
  • Cindy Lee
    • 1
  • Elizabeth M. Cosper
    • 1
  • Edward J. Carpenter
    • 1
  1. 1.Marine Sciences Research CenterState University of New YorkStony BrookUSA

Personalised recommendations