Skip to main content

Domain Growth Kinetics: Microscopic Derivation of the t½ Law

  • Conference paper
Cellular Automata and Modeling of Complex Physical Systems

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 46))

  • 216 Accesses

Abstract

Time evolution of a Cellular Automaton that describes shrinking domains is studied. A singly connected domain of Ising spins, embedded in a sea of the opposite phase, develops at T = 0 according to a dynamic rule that does not allow its perimeter to increase. At long enough times the domain disappears; we have shown that the average lifetime of such a domain is proportional to its area. We also considered the T = 0 dynamics of a single infinite quadrant, and have shown that it maps onto a diffusion problem with exclusion in one dimension. This latter problem is mapped onto a critical 6-vertex model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.G. Morris, F.M. Besag and R.E. Smallman, Philos. Mag. 29, 43 (1974); T. Hashimoto, K. Nishihara and Y. Takeuchi, J. Phys. Soc. Jpn. 45, 1127 (1978); Y. Nöda, S. Nishihara and Y. Yamada, J. Phys. Soc. Jpn. 53, 4241 (1984).

    Article  ADS  Google Scholar 

  2. M.K. Phani, J.L. Lebowitz, M.H. Kalos and O. Penrose, Phys. Rev. Lett. 45, 366 (1980); P.S. Sahni, G. Dee, J.D. Gunton, M. Phani, J.L. Lebowitz and M. Kalos, Phys. Rev. B 24, 410 (1981).

    Article  ADS  Google Scholar 

  3. P.S. Sahni, G.S. Grest and S.A. Safran, Phys. Rev. Lett. 50, 60 (1983).

    Article  ADS  Google Scholar 

  4. O.T. Vails and G.F. Mazenko, Phys. Rev. B 34, 7941 (1986).

    Article  ADS  Google Scholar 

  5. I.M. Lifshitz, Zh. Eksp. Teor. Fiz. 42, 1354 (1962) (Sov. Phys. - JETP 15, 939 (1962)).

    Google Scholar 

  6. J.W. Cahn and S.M. Allen, Acta Metall. 27, 1085 (1979).

    Article  Google Scholar 

  7. S.K. Chan, J. Chem. Phys. 67, 5755 (1977).

    Article  ADS  Google Scholar 

  8. I.M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).

    Article  ADS  Google Scholar 

  9. K. Binder and D.W. Heermann, in Scaling Phenomena in Disordered Systems, edited by R. Pynn and A. Skjeltorp (Plenum, New-York, 1985); H. Furukawa, Adv. Phys. 34, 703 (1985); J.D. Gunton, in Time Dependent Effects in Disordered Materials, edited by R. Pynn and T. Riste (Plenum, New-York, 1987).

    Google Scholar 

  10. K. Kawasaki, inPhase Transitions and Critical Phenomena, C. Domb and M.S. Green (eds.), Vol.2, 443 (Academic, New York 1972).

    Google Scholar 

  11. R. Glauber, J. Math. Phys. 4,294 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. See for example W. Feller, An Introduction to Probability Theory and its Applications vol I Wiley New York,1966.

    Google Scholar 

  13. H. Rost, Z. Wahrsch. Verw. Gebiete 58,41 (1981).

    Article  MATH  Google Scholar 

  14. J.P. Marchand and P.A. Martin, J. Stat. Phys 44, 491 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  15. T. M. Liggett,Interacting Particle Systems (Springer-Verlag, New York 1985).

    Book  MATH  Google Scholar 

  16. Such partitionings of a lattice are called Margolus blocks in the Cellular Automaton literature: T. Toffoli and N. Margolus,Cellular Automata Machine: a new environment for modelling, MIT Press (1987).

    Google Scholar 

  17. E. Domany and W. Kinzel, Phys.Rev. Lett. 53, 311 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  18. R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press (1982).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Domany, E., Kandel, D. (1989). Domain Growth Kinetics: Microscopic Derivation of the t½ Law. In: Manneville, P., Boccara, N., Vichniac, G.Y., Bidaux, R. (eds) Cellular Automata and Modeling of Complex Physical Systems. Springer Proceedings in Physics, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75259-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75259-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75261-2

  • Online ISBN: 978-3-642-75259-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics