Skip to main content

Growth and Respiration Characteristics of Candida albicans

  • Chapter
Candida Albicans

Abstract

The dimorphic fungus, Candida albicans, grows best under aerobic conditions, although it does exhibit a limited degree of anaerobic growth. Growth rates of C. albicans show substantial variations according to the strain and culture conditions used. Under optimal conditions it can achieve maximal doubling times of just under 1 h [29,99].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aerts RJ, Durston AJ, Konijn TM (1987) Cytoplasmic pH at the onset of development in Dictyostelium. J Cell Science 87: 423

    PubMed  CAS  Google Scholar 

  2. Alvarez A, McKinnon JE (1957) “Lethal” variant of Candida albicans, a “petite colonie” mutant. Science 126:399

    Article  PubMed  CAS  Google Scholar 

  3. Aly R, Maibach H (1983) Susceptibility to skin infection. In: Rook AJ, Maibach H (eds) Recent advances in dermatology, no 6. Churchill Livingstone, Edinburgh, p 75

    Google Scholar 

  4. Anderson JM, Soll DR (1984) Effects of zinc on stationary-phase phenotype and macromolecular synthesis accompanying outgrowth of Candida albicans. Infect Immun 46: 13

    PubMed  CAS  Google Scholar 

  5. Aoki S, Ito-Kuwa S (1982) Respiration of Candida albicans in relation to its morphogenesis. Plant Cell Physiol 23: 721

    Google Scholar 

  6. Aoki S, Ito-Kuwa S (1984) The appearance and characterization of cyanide-resistant respiration in the fungus Candida albicans. Microbiol Immunol 28: 393

    PubMed  CAS  Google Scholar 

  7. Aoki S, Ito-Kuwa S (1987) Induction of petite mutation with acriflavine and elevated temperatures in Candida albicans. J Med Vet Mycol 25: 269

    Article  PubMed  CAS  Google Scholar 

  8. Balish E (1973) Methionine biosynthesis and S-adenosyl methionine degradation during an induced morphogenesis of Candida albicans. Can J Microbiol 19: 847

    Article  PubMed  CAS  Google Scholar 

  9. Balish E (1973) S-adenosylmethionine metabolism by members of the genus Candida. Can J Microbiol 19: 1297

    Article  PubMed  CAS  Google Scholar 

  10. Bartinicki-Garcia S, Lippman E (1968) Fungal morphogenesis-cell wall construction in Mucor rouxii. Science 165: 302

    Article  Google Scholar 

  11. Bedard DP, Singer RA, Johnston GC (1986) Transient cell cycle arrest of the yeast Saccharomyces cerevisiae by the amino acid analog beta-2-DL-thienylalanine. J Bacteriol 141: 100

    Google Scholar 

  12. Borgers M, DeNollin S, Thone F, Belle H Van (1977) Cytochemical localization of NADH oxidase in Candida albicans. J Histochem Cytochem 25: 193

    Article  PubMed  CAS  Google Scholar 

  13. Borgess M, Bossche H van den (1982) The mode of action of antifungal drugs. In: Levine HB (ed) Ketoconazole in the management of fungal disease. ADIS, Australia, p 25

    Google Scholar 

  14. Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18: 225

    Article  PubMed  CAS  Google Scholar 

  15. Bulder CJEA (1964) Induction of petite mutation and inhibition of synthesis of respiratory enzymes in various yeasts. Anton Leeuwen 30: 1

    Article  CAS  Google Scholar 

  16. Bulder CJEA (1964) Lethality of the petite mutation in petite negative yeasts. Anton Leeuwen 30: 442

    Article  CAS  Google Scholar 

  17. Cassone A, Sullivan PA, Shepherd MG (1985) N-acetyl-D-glucosamine- induced morphogenesis in Candida albicans. Microbiologica 58: 85

    Google Scholar 

  18. Chaffin WL (1985) Effect of tunicamycin on germ tube and yeast bud formation in Candida albicans. Can J Microbiol 131: 1853

    CAS  Google Scholar 

  19. Chiew YY (1989) The dynamics of carbohydrate metabolism in Candida albicans. Exp Mycol 13: 49

    Article  CAS  Google Scholar 

  20. Chin CM, Shepherd MG, Sullivan PA (1975) Cyanide insensitive respiration in Candida albicans. Proc Univ Otago Med Sch 53: 42

    Google Scholar 

  21. Cutler JE, Hazen KC (1983) Yeast/mold morphogenesis. In: Bunnet JW, Cieger A (eds) Secondary metabolism and differentiation in fungi, vol 5. Dekker, New York, p 267

    Google Scholar 

  22. Dabrowa N, Howard DH (1983) Blastoconidium germination. In: Howard DH (ed) Fungi pathogenic for humans and animals. Dekker, New York, p 525

    Google Scholar 

  23. Davison MT, Garland PB (1977) Structure of mitochondria and vacuoles of Candida utilis and Schizosaccharomyces pombe studied by electron microscopy of aerial thin sections and model building. J Gen Microbiol 98: 147

    PubMed  CAS  Google Scholar 

  24. Downie JA, Garland PB (1973) An antimycin A and cyanide-resistant variant of Candida utilis arising during copper-limited growth. Biochem J 134: 1051

    PubMed  CAS  Google Scholar 

  25. Dudani AK, Prasad R (1985) Differences in amino acid transport and phospholipid contents during the cell cycle of Candida albicans. Folia Microbiol 30: 493

    Article  CAS  Google Scholar 

  26. Edwards DL, Rosenberg E (1976) Regulation of cyanide-insensitive respiration in Neurospora crassa. Eur J Biochem 62: 217

    Article  PubMed  CAS  Google Scholar 

  27. Edwards DL, Rosenberg E, Maroney PA (1974) Induction of cyanide insensitive respiration in N. crassa. J Biol Chem 249: 3351

    Google Scholar 

  28. Eklund T, Jarmud T (1983) Microculture model studies on the effect of various gas atmospheres on microbial growth at different temperatures. J Appl Bacteriol 55: 119

    Article  PubMed  CAS  Google Scholar 

  29. Evans EGV, Odds FC, Richardson MD, Holland KT (1974) The effect of growth medium on filament production in Candida albicans. Sabouraudia 12: 112

    Article  PubMed  CAS  Google Scholar 

  30. Fiechter A, Fuhrman GF, Kapell O (1981) Regulation of glucose metabolism in growing yeast cells. Adv Microbial Physiol 22: 123

    Article  CAS  Google Scholar 

  31. Frame G W, Strauss WG, Maibach HI (1972) Carbon dioxide and emission of the human arm and hand. J Invest Dermatol 59: 155

    Article  PubMed  CAS  Google Scholar 

  32. Funato A (1979) Electron microscope studies on Candida tropicalis in synchronous culture with special reference to three-dimensional structure of its mitochondrion. J Tokyo Med Coll 37: 693

    Google Scholar 

  33. Gow NAR, Gooday GW (1982) Growth kinetics and morphology of colonies of the filamentous form of Candida albicans. J Gen Microbiol 128: 2187

    PubMed  CAS  Google Scholar 

  34. Gow NAR, Gooday GW (1987) Cytological aspects of dimorphism in Candida albicans. CRC Crit Rev Microbiol 15: 73

    Article  CAS  Google Scholar 

  35. Gow NAR, Henderson G, Gooday GW (1986) Cytological relationships between the cell cycle and duplication cycle of Candida albicans. Microbios 47: 97

    PubMed  CAS  Google Scholar 

  36. Grappel SF, Calderone RA (1976) Effect of antibodies on the respiration and morphology of Candida albicans. Sabouraudia 14: 51

    Article  PubMed  CAS  Google Scholar 

  37. Guerin M, Camougrand N (1986) The alternate oxidase of Candida parapsilosis. Eur J Biochem 159: 519

    Article  PubMed  CAS  Google Scholar 

  38. Hasilik A, Livar M (1972) The effect of 4-bromobenzyl isothiocyanate on the redox state of nicotinamide-adenine dinucleotides in Candida albicans. Chem Biol Interact 4: 305

    Article  PubMed  CAS  Google Scholar 

  39. Hauswirth WW, Laipis PJ (1982) Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc Natl Acad Sei USA 79: 4686

    Article  CAS  Google Scholar 

  40. Henry MF, Hamaide-Deplus MC, Nyns EJ (1974) Cyanide-insensitive respiration of Candida albicans. Anton Leeuwen 40: 79

    Article  CAS  Google Scholar 

  41. Henry MF, Bonner WD, Nyns EJ Jr (1977) Involvement of iron in the biogenesis of the cyanide-insensitive respiration in the yeast Saccharomycopsis lipolytica. Biochim Biophys Acta 460: 94

    Article  PubMed  CAS  Google Scholar 

  42. Holmes AR, Shepherd MG (1987) Proline induced germ-tube formation in Candida albicans’. role of prolice uptake and nitrogen metabolism. J Gen Microbiol 133: 3219

    PubMed  CAS  Google Scholar 

  43. Holmes AR, Shepherd MG (1988) Nutritional factors determine germ tube formation in Candida albicans. J Med Vet Mycol 26: 127

    Article  PubMed  CAS  Google Scholar 

  44. Iralu V (1971) Formation of aerial hyphae in Candida albicans. Appl Microbiol 22: 482

    PubMed  CAS  Google Scholar 

  45. Ito-Kuwa S, Aoki S, Watanabe T, Ehara T, Osafune T (1988) Fluorescence microscopic studies on mitochondria and mitochondrial nucleoids in a wild-type strain and respiratory mutants of Candida albicans. J Med Vet Mycol 26: 207

    Article  PubMed  CAS  Google Scholar 

  46. Jayakumar A, Singh M, Prasad R (1978) Characteristics of proline transport in normal and starved cells of Candida albicans. Biochim Biophys Acta 514: 348

    Article  PubMed  CAS  Google Scholar 

  47. Johnston GC, Singer RA (1978) RNA synthesis and control of cell division in the yeast Saccharomyces cerevisiae. Cell 14: 951

    Article  PubMed  CAS  Google Scholar 

  48. Kennedy MJ (1981) Inhibition of Candida albicans by the anaerobic oral flora of mice in vitro. Sabouraudia 19: 205

    Article  PubMed  CAS  Google Scholar 

  49. Kockova-Kratochvilova A, Stuchlik V, Pokorna M (1964) The genus Candida Berkhout. V. Basic nutrition of Candida albicans in static culture. Folia Microbiol 9: 361

    Google Scholar 

  50. Kot EJ, Rolewic LJ, Olson VC, McClary DO (1975) Growth, respiration and cytology of acetate-negative mutants of Candida albicans. Anton Leeuwen 41: 229

    Article  CAS  Google Scholar 

  51. Kot EJ, Olson VL, Rolewic LJ, McClary DO (1976) An alternate respiratory pathway in Candida albicans. Anton Leeuwen 42: 33

    Article  CAS  Google Scholar 

  52. Lambowitz AW, Slayman CW (1971) Cyanide resistant respiration in Neurospora crassa. J Bacteriol 108: 1087

    PubMed  CAS  Google Scholar 

  53. Land GA, McDonald WC, Stjernholm RL, Friedman L (1975) Factors affecting filamentation in Candida albicans. Relationship of the uptake and distribution of proline to morphogenesis in Candida albicans. Infect Immun 11: 1014

    Google Scholar 

  54. Land GA, McDonald WC, Stjernholm RL, Friedman L (1975) Factors affecting filamentation in Candida albicans: changes in respiratory activity of Candida albicansdm’mg fermentation. Infect Immun 12: 119

    PubMed  CAS  Google Scholar 

  55. Laties GG (1982) The cyanide resistant, alternative respiratory path in higher plant respiration. Annu Rev Plant Physiol 33: 519

    Article  CAS  Google Scholar 

  56. Lee KL, Buckley HR, Campbell CC (1975) An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 13: 148

    Article  PubMed  CAS  Google Scholar 

  57. Littman ML, Miwatani T (1963) Effect of water soluble vitamins and their analogues on the growth of Candida albicans. I. Biotin, pyridoxamine, pyridoxine and fluorinated pyrimidines. Mycopathol Mycol Appl 21: 81

    Article  PubMed  CAS  Google Scholar 

  58. Littman ML, Miwatani T (1963) Effect of water soluble vitamins and their analogues on growth of Candida albicans. II. Vitamin B, substituted pyrimidines and thiazoles. Mycopathol Mycol Appl 21: 298

    Google Scholar 

  59. Littman ML, Miwatani T (1964) Effect on water soluble vitamins and their analogues on growth of Candida albicans. III. Para-amino-benzoic acid, nicotinic acid, inositol and their analogues. Mycopathol Mycol Appl 22: 117

    CAS  Google Scholar 

  60. Loomis WF (1982) The development of Dictyostelium discoedium. Acacemic Press, London

    Google Scholar 

  61. Makinen KK, Ojanotko A, Vidgren H (1975) Effect of xylitol on the growth of three oral strains of Candida albicans. J Dent Res 54: 1239

    Article  PubMed  CAS  Google Scholar 

  62. Mardon D, Balish E, Philliphs AW (1969) Control of dimorphism in a biochemical variant of Candida albicans. J Bacteriol 100: 701

    PubMed  CAS  Google Scholar 

  63. Maresca B, Lambowitz AL, Kobayashi GS, Medoff GL (1979) Respiration in the yeast and mycelial phases of Histoplasma capsulatum. J Bacteriol 138: 647

    PubMed  CAS  Google Scholar 

  64. Maresca B, Kumar BV, Medoff J, Medoff G, Kobayashi GS (1980) Studies on dimorphism in H. capsulatum. Biochemical changes during the differentiation process. In: Dreusser HJ (ed) Medical mycology. Fisher, New York, p 17

    Google Scholar 

  65. McClary DO (1952) Factors affecting the morphology of Candida albicans. Ann Mo Bot Gard 39: 137

    Article  CAS  Google Scholar 

  66. McDonald SA, Durston AJ (1984) The cell cycle and sorting behaviour in Dictyostelium discoeidium. J Cell Sei 66: 195

    CAS  Google Scholar 

  67. McFeeters GA, Wilson DF, Strobel GA (1970) Cytochromes in a cyanide resistant strain of Bacillus cereus. Can J Microbiol 16: 1221

    Article  Google Scholar 

  68. Miller SE, Finnerty WR (1979) Age related physiological studies comparing Candida albicans chlamydospores to yeasts. Can J Microbiol 25: 765

    Article  PubMed  CAS  Google Scholar 

  69. Miller SE, Spurlock BO, Michaelis GE (1974) Electron microscopy of young Candida albicans chlamydospores. J Bacteriol 119: 992

    PubMed  CAS  Google Scholar 

  70. Mizuno N, Montes LF (1966) Oxidative enzyme activity in Candida albicans. Sabouraudia 5: 46

    Article  PubMed  CAS  Google Scholar 

  71. Mounolou JC, Jakob H, Slonimski PP(1986) Mitochondrial DNA from yeast “petite” mutants: specific changes of bouyant density corresponding to different cytoplasmic mutations. Biochem Biophys Res Commun 12: 448

    Google Scholar 

  72. Nagai S (1963) Diagnostic color differentiation plates for hereditary respiration deficiency in yeast. J Bacteriol 86: 299

    PubMed  CAS  Google Scholar 

  73. Nickersen WJ (1963) Symposium on biochemical basis of morphogenesis in fungi. Bacteriol Rev 27: 305

    Google Scholar 

  74. Nickersen W J, Falcone G (1956) Identification of protein disulfide reductase as a cellular division enzyme in yeasts. Science 124: 722

    Article  Google Scholar 

  75. Nickersen WJ, Van Rij NJW (1949) The effect of sulfhydryl compounds, penicillin and cobalt on the cell division mechanism of yeasts. Biochim Biophys Acta 3: 461

    Article  Google Scholar 

  76. Niimi M, Tokunaga M, Nakayama H (1986) Regulation of mannitol catabolism in Candida albicans: evidence for cyclic-AMP dependent glucose effect. J Med Vet Mycol 24: 211

    Article  PubMed  CAS  Google Scholar 

  77. Niimi M, Kamiyama A, Tokunaga M, Nakayama H (1987) Evidence for glucose effect on N-acetyl glucosamine catabolism in Candida albicans. Can J Microbiol 33: 345

    Article  PubMed  CAS  Google Scholar 

  78. Niimi M, Kamiyama A, Tokunaga M (1988) Respiration of medically important Candida species and Saccharomyces cerevisiae in relation to glucose effect. J Med Vet Mycol 26: 195

    Article  PubMed  CAS  Google Scholar 

  79. Odds FC (1985) Morphogenesis in Candida albicans. CRC Crit Rev Microbiol 12: 45

    Article  CAS  Google Scholar 

  80. Odds FC (1988) Candida and candidosis, 2nd edn. Balliere Tindall, London

    Google Scholar 

  81. Odds FC, Abbott AB (1980) A simple system for the presumptive identification of Candida albicans and differentiation of strains within the species. Sabouraudia 18: 301

    Article  PubMed  CAS  Google Scholar 

  82. Oivo PD, Memanus EJ, Riggsby WS, Jones JM (1987) Mitochondria DNA polymorphism in Candida albicans. J Infect Dis 156: 214

    Article  Google Scholar 

  83. Paris S, Duran-Gonzalez S, Mariat F (1985) Nutritional studies on Paracoccidiodies brasilensis: the role of organic sulphur in dimorphism. Sabouraudia 23: 85

    Article  PubMed  CAS  Google Scholar 

  84. Persi MA, Burnham JC (1981) Use of tannic acid as a fixative mordant to improve the ultrastructural appearance of Candida albicans blastospores. Sabouraudia 19: 1

    Article  PubMed  CAS  Google Scholar 

  85. Petrik M, Kappeli O, Fiechter A (1983) An expanded concept for the glucose effect in the yeast Saccharomyces uvarum: involvement of short- and long-term regulation. J Gen Microbiol 129: 43

    CAS  Google Scholar 

  86. Pitillo RF, Narkates AJ (1964) Folic acid inhibition of non-proliferating bacteria. Can J Microbiol 10: 345

    Article  Google Scholar 

  87. Pollack JH, Hashimoto T (1985) Ethanol induced germ tube formation in Candida albicans. J Gen Microbiol 131: 3303

    PubMed  CAS  Google Scholar 

  88. Portillo F, Gancedo C (1984) Mode of action of miconazole on yeasts: inhibition of mito¬chondrial ATPase. Eur J Biochem 143: 273

    Article  PubMed  CAS  Google Scholar 

  89. Restrepo A, Salzar ME, Cano LE, Stover EP, Feldman D, Stevens DA (1984) Estrogens inhibit mycelium to yeast transformation in the fungus Paracoccidiodies brasilensis’. implications for resistance of females to paracoccidioidomycosis. Infect Immun 47: 346

    Google Scholar 

  90. Ruiz-Herrera J (1985) Dimorphism in Mucor species with emphasis on M. rouxii and M. bacilliformis. In: Szaniszlo PJ (ed) Fungal dimorphism. Plenum, London, p 361

    Google Scholar 

  91. Rustin P, Dupont J, Lance C (1983) A role for fatty acid peroxy radicals in the cyanide-in- sensitive pathway of plant mitochondria? Tr Biochem Sei 8: 155

    Article  CAS  Google Scholar 

  92. Rustin P, Dupont J, Lance C (1983) Oxidative interactions between fatty acid peroxy radicals and quinones: possible involvement in cyanide-resistant electron transport in plant mito¬chondria. Arch Biochem Biophys 225: 630

    Article  PubMed  CAS  Google Scholar 

  93. Rustin P, Dupont J, Lance C (1984) Involvement of lipid peroxy radicals in the cyanide-resistant electron transport pathway. Physiol Veg 22: 643

    CAS  Google Scholar 

  94. Samarnayake LP, Geddes D, Weetman D, Macfarlane TW (1983) Growth and acid production of Candida albicans in carbohydrate supplemented media. Microbios 37: 105

    Google Scholar 

  95. San Blas F, San Blas G, Inglow D (1980) Dimorphism in Paracoccidiodies brasilensis. In: Preusser HJ (ed) Medical mycology. Fisher, New York, p 23

    Google Scholar 

  96. Schwarz J (1971) The pathogenesis of Histoplasmosis. In: Ajello L, Chick EW, Furcolow ML (eds) Histoplasmosis proceedings. Thomas, Springfield, 111, p 244

    Google Scholar 

  97. Shah DM, Langley CH (1979) Inter- and intra-specific variations in restriction maps of Drosophila mitochondrial DNAs. Nature 281: 696

    Article  PubMed  CAS  Google Scholar 

  98. Shepherd MG (1988) Morphogenetic transformation in fungi. Curr Topics Med Mycol 2: 278

    Article  CAS  Google Scholar 

  99. Shepherd MG, Sullivan PA (1976) The production and growth characteristics of yeast and mycelial forms of Candida albicans in continuous cultures. J Gen Microbiol 93: 361

    PubMed  CAS  Google Scholar 

  100. Shepherd MG, Chin CM, Sullivan PA (1978) The alternate respiratory pathway of Candida albicans. Arch Microbiol 116: 61

    Article  PubMed  CAS  Google Scholar 

  101. Shepherd MG, Poulter RTM, Sullivan PA (1985) Candida albicans’, biology, genetics and pathogenecity. Annu Rev Microbiol 39: 579

    Article  PubMed  CAS  Google Scholar 

  102. Shigematsu ML, Uno J, Arai T (1982) Effect of ketoconazole on isolated mitochondria from Candida albicans. Antimicrob Agents Chemother 21: 919

    PubMed  CAS  Google Scholar 

  103. Singer RA, Johnston GC, Bedard D (1978) Methionine analogs and cell division regulation in the yeast, Saccharomyces cerevisiae. Proc Natl Acad Sei USA 75: 6083

    Google Scholar 

  104. Singh B, Gupta KC (1972) Effect of growth-regulating substances on the biomass and lipids of some fungi. Zentralbl Bakteriol (A) 220: 554

    CAS  Google Scholar 

  105. Singh M, Jayakumar A, Prasad R (1978) The effect of altered lipid composition on the transport of various amino acids in Candida albicans. Arch Biochem Biophys 191: 680

    Article  PubMed  CAS  Google Scholar 

  106. Singh M, Jayakumar A, Prasad R (1979) Lipid composition and polyene antibiotic sensitivity in isolates of Candida albicans. Microbios 24: 7

    PubMed  CAS  Google Scholar 

  107. Sims W (1986) Effects of carbon dioxide on the growth and form of Candida albicans. J Med Microbiol 22: 203

    Article  PubMed  CAS  Google Scholar 

  108. Soll DR (1984) The cell cycle and commitment to alternate cell fates in Candida albicans. In: Nurse P, Streiblova E (eds) The microbial cell cycle. CRC, Boca Raton, p 143

    Google Scholar 

  109. Soli DR (1986) The regulation of cellular differentiation in the dimorphic yeast Candida albicans. Bioessays 5: 5

    Article  Google Scholar 

  110. Soll DR, Bedell GW, Brummell M (1981) Zinc and the regulation of growth and phenotype in the infectious yeast Candida albicans. Infect Immun 32: 1139

    PubMed  CAS  Google Scholar 

  111. Staebell M, Soli DR (1985) Temporal and spatial differences in cell wall expansion during bud and mycelium formation in Candida albicans. J Gen Microbiol 131: 1467

    PubMed  CAS  Google Scholar 

  112. Stevens B (1981) Mitochondrial structure. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomycescerevisiae. Life cycle and inheritance. Cold Spring Harbor Laboratory, New York, p 471

    Google Scholar 

  113. Szaniszlo PJ, Jacobs CW, Gels PA (1983) Dimorphism: morphological and biochemical aspects. In: Howard DH (ed) Fungi pathogenic for humans and animals, part A. Dekker, New York, p 323

    Google Scholar 

  114. Tanaka K, Kanbe T, Kuroiwa T (1985) Three dimensional behaviour of mitochondria during cell division and germ tube formation in the dimorphic yeast Candida albicans. J Cell Sei 73: 207

    CAS  Google Scholar 

  115. Taylor JW, Wells K (1979) The mitochondrion in mitotic and starved cells of Bullera alba. Exp Mycol 3: 16

    Article  Google Scholar 

  116. Teranishi Y, Shimizu S, Tanaka A, Fukui S (1974) Comparative studies on respiratory activity and cytochrome content of Candida tropicalis pK 233 grown on hydrocarbon and on glucose. Agric Biol Chem 28: 1581

    Article  Google Scholar 

  117. Vanderleyden J, Kurth J, Verchtert H (1979) Characterization of cyanide insensitive respiration in mitochondria and submitchondrial particles of Moniliella tomentosa. Biochem J 182: 437

    PubMed  CAS  Google Scholar 

  118. van Urk H, Mak PR, Scheffers WA, Van Dijken JP (1988) Metabolic responses of Saccha- romyces cerevisiae CBS 8066 and Candida utilis CBS 621 upon transition from glucose limitation to glucose excess. Yeast 4: 283

    Article  PubMed  Google Scholar 

  119. Ward JM, Nickersen WJ (1958) Respiratory metabolism of normal and divisionless strains of Candida albicans. J Gen Physiol 41: 703

    Article  PubMed  CAS  Google Scholar 

  120. Watkins PD, Brandt PM, McClary DO (1974) Selection and characterization of acriflavine induced mutants of Candida albicans. Anton Leeuwen 40: 153

    Article  CAS  Google Scholar 

  121. Webster CE, Odds FC (1987) Growth of pathogenic Candida isolates anaerobically and under elevated concentrations of C02 in air. J Med Vet Mycol 25: 47

    Article  PubMed  CAS  Google Scholar 

  122. Williamson DH, Finnell DJ (1975) The use of fluorescent DNA — binding agent for detecting and separating yeast mitochondrial DNA. Methods Cell Biol 12: 335

    Article  PubMed  CAS  Google Scholar 

  123. Wills JW, Troutman WB, Riggsby WS (1985) Circular mitochondrial genome of Candida albicans contains a large inverted duplication. J Bacteriol 164: 7

    PubMed  CAS  Google Scholar 

  124. Yamaguchi H (1974) Dimorphism in Candida albicans. I. Morphology-dependent changes in cellular content of macromolecules and respiratory activity. J Gen Appl Microbiol 20: 87

    Article  CAS  Google Scholar 

  125. Yamaguchi H, Kanda Y, Iwata K (1971) Biochemical properties of mitochondria from Candida albicans. Sabouraudia 9: 221

    Article  PubMed  CAS  Google Scholar 

  126. Yamaguchi H, Kanda Y, Osumi M (1974) Dimorphism in Candida albicans. II. Comparison of fine structure of yeast-like and filamentous phase growth. J Gen Appl Microbiol 20: 101

    Article  Google Scholar 

  127. Yamaguchi H, Hiiatani T, Osumi M, Iwata K (1982) Isolation and characterization of mutants, especially respiratory deficient mutants, of Candida albicans. Jpn J Med Mycol 23: 132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anand, S., Prasad, R. (1991). Growth and Respiration Characteristics of Candida albicans . In: Prasad, R. (eds) Candida Albicans. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75253-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75253-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75255-1

  • Online ISBN: 978-3-642-75253-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics