Skip to main content

Morphogenesis in Candida albicans

  • Chapter

Abstract

Along with the majority of human pathogenic fungi, Candida albicans exhibits dimorphism. An intriguing feature associated with the morphological changes in the pathogenic fungus is that the morphology of the fungus in the infected tissue is different from that of the propagule which initiates the infection. This has led to the assumption that the morphological changes occurring in the pathological state in some way confer on the fungus a survival advantage. The study of fungal morphogenesis, therefore, has assumed some importance, as it improves our understanding of the mechanism of pathogenicity and provides insights into eukaryotic differentiation. Fungal morphogenesis has been reviewed by Szaniszlo [84], Shepherd [66,71], Soll [74] and Odds [52].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams AEM, Pringle JR (1984) Relationship of actin and tubulin distribution in wild-type and morphogenetic-mutant of Saccharomyces cerevisiae. J Cell Biol 98: 934

    Article  PubMed  CAS  Google Scholar 

  2. Anderson JM, Soll DR (1984) Differences in actin localization during bud and hypha formation in the yeast Candida albicans. J Gen Microbiol 132: 2035

    Google Scholar 

  3. Ballou CE (1982) Yeast cell wall and cell surface. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces. Metabolism and gene expression. Cold Spring Harbor, New York, p 335

    Google Scholar 

  4. Bartnicki-Garcia S, Lippman E (1969) Fungal morphogenesis: cell wall construction in Mucor rouxii. Science 165: 302

    Article  PubMed  CAS  Google Scholar 

  5. Braun PC, Calderone RA (1978) Chitin synthesis in Candida albicans: comparison of yeast and hyphal forms. J Bacteriol 133: 1472

    PubMed  CAS  Google Scholar 

  6. Bouchara J-P, Tronchin G, Annaix U, Robert R, Senet J-M (1990) Laminin receptors on Candida albicans germ tubes. Infect Immun 58: 48

    PubMed  CAS  Google Scholar 

  7. Byers G, Goestch L (1976) A highly ordered ring of membrane-associated filaments in budding yeast. J Cell Biol 69: 717

    Article  PubMed  CAS  Google Scholar 

  8. Casanova M, Gil ML, Cardenoso L, Martinez JP, Sentandreu R (1989) Identification of wall-specific antigens synthesized during germ tube formation by Candida albicans. Infect Immun 57: 262

    PubMed  CAS  Google Scholar 

  9. Cassone A, Simonetti N, Strippoli V (1973) Ultrastructural changes in the wall during germ-tube formation from blastospores of Candida albicans. J Gen Microbiol 77: 417

    PubMed  CAS  Google Scholar 

  10. Cassone A, Kerridge D, Gale EF (1979) Ultrastructural changes in the cell wall of Candida albicans following cessation of growth and their possible relationship to the development of polyene resistance. J Gen Microbiol 110: 339

    PubMed  CAS  Google Scholar 

  11. Cassone A, Carpinelli G, Angiolella L, Maddaluno G, Podo F (1983) nP nuclear magnetic resonance study of growth and dimorphic transition in Candida albicans. J Gen Microbiol 129: 1569

    Google Scholar 

  12. Chaffin WL (1983) Site selection for bud and germ-tube emergence in Candida albicans. J Gen Microbiol 130: 431

    Google Scholar 

  13. Chattaway FW, Holmes MR, Barlow A JE (1968) Cell wall composition of the mycelial and blastospore forms of Candida albicans. J Gen Microbiol 51: 367

    PubMed  CAS  Google Scholar 

  14. Chiew YY, Shepherd MG, Sullivan PA (1980) Regulation of chitin synthesis during germ-tube formation in Candida albicans. Arch Microbiol 125: 97

    Article  PubMed  CAS  Google Scholar 

  15. Dabrowa N, Taxer SS, Howard DH (1976) Germination of Candida albicans induced by proline. Infect Immun 13: 830

    PubMed  CAS  Google Scholar 

  16. Dabrowa N, Howard DH (1984) Heat shock and heat stroke proteins observed during germination of the blastoconidia of Candida albicans. Infect Immun 44: 537

    PubMed  CAS  Google Scholar 

  17. Douglas J (1987) Adhesion of Candida species to epithelial surfaces. CRC Crit Rev Microbiol 15: 27

    Article  CAS  Google Scholar 

  18. Edwards GA, Edwards MR (1960) The intracellular membranes of Blastomyces dermatitidis. Am J Bot 47: 622

    Article  Google Scholar 

  19. Elorza MV, Murgui A, Sentandreu R (1985) Dimorphism in Candida albicans’, contribution of mannoproteins to the architecture of yeast and mycelial cell walls. J Gen Microbiol 131: 2209

    PubMed  CAS  Google Scholar 

  20. Field C, Schekman R (1980) Localized secretion of acid phosphatase reflects the pattern of cell surface growth in Saccharomyces cerevisiae. J Cell Biol 86: 123

    Article  PubMed  CAS  Google Scholar 

  21. Funato A (1979) Electron microscope studies on Candida tropicalis in synchronous culture with special reference to three-dimensional structure of its mitochondrion. J Tokyo Med College 37: 693

    Google Scholar 

  22. Galun E (1972) Morphogenesis of Trichoderma: autoradiography of intact colonies labelled by 3H N-acetylglucosamine as a marker of new cell wall biosynthesis. Arch Microbiol 86: 305

    Article  CAS  Google Scholar 

  23. Galun M, Braun A, Frensdorff A, Galun E (1976) Hyphal walls of isolated lichen fungi. Autoradiographic localization of precursor incorporation and binding of fluorescein-conjugated lectins. Arch Microbiol 108: 9

    Google Scholar 

  24. Garrison RG (1983) Ultrastructural cytology of the pathogenic fungi. In: Howard DH (ed) Fungi pathogenic for man and animals, part A. Dekker, New York, p 229

    Google Scholar 

  25. Gilmore BJ, Retsinas EM, Lorenz JS, Hostetter MK (1988) An iC3b receptor on Candida albicans’, structure, function and correlates for pathogenicity. J Infect Dis 157: 38

    Article  PubMed  CAS  Google Scholar 

  26. Gooday GW (1971) An autoradiographic study of some fungi. J Gen Microbiol 67: 125

    CAS  Google Scholar 

  27. Gopal PK, Sullivan PA, Shepherd MG (1982) Enzymes of N-acetylglucosamine metabolism during germ-tube formation in Candida albicans. J Gen Microbiol 128: 2319

    PubMed  CAS  Google Scholar 

  28. Gopal PK, Sullivan PA, Shepherd MG (1984) Metabolism of (14C) glucose by regenerating spheroplasts of Candida albicans. J Gen Microbiol 130: 325

    PubMed  CAS  Google Scholar 

  29. Gopal PK, Sullivan PA, Shepherd MG (1984) Isolation and structure of glucan from regenerating spheroplasts of Candida albicans. J Gen Microbiol 131: 1217

    Google Scholar 

  30. Gopal PK, Shepherd MG, Sullivan PA (1984) Analysis of wall glucans from yeast, hyphal and germ-tube forming cells of Candida albicans. J Gen Microbiol 130: 3295

    PubMed  CAS  Google Scholar 

  31. Gow NAR, Gooday G W (1984) A model for the germ tube formation and mycelial growth form of Candida albicans. Sabouraudia 22: 137

    Article  PubMed  CAS  Google Scholar 

  32. Gow NAR, Gooday GW, Newsam RJ, Gull K (1980) Ultrastructure of the septum in Candida albicans. Curr Microbiol 4: 357

    Article  Google Scholar 

  33. Gow NAR, Henderson G, Gooday GW (1986) Cytological interrelationships between the cell cycle and duplication cycle of Candida albicans. Microbios 47: 97

    PubMed  CAS  Google Scholar 

  34. Grove SN, Oujezdsky KB, Szaniszlo PJ (1973) Budding in the dimorphic fungus Phialophora dermatitidis. J Bacteriol 115: 323

    PubMed  CAS  Google Scholar 

  35. Hasenclever HF, Mitchell WO (1961) Antigenic studies of Candida. I. Observation of two antigenic groups in Candida albicans. J Bacteriol 80: 570

    Google Scholar 

  36. Heidenrich F, Dierich MP (1985) Candida albicans and Candida stellatoidea, in contrast to other Candida species, bind iC3b and C3d but not C3b. Infect Immun 50–598

    Google Scholar 

  37. Holmes AR, Shepherd MG (1987) Proline induced germ-tube formation in Candida albicans: role of proline uptake and nitrogen metabolism. J Gen Microbiol 133: 3219

    PubMed  CAS  Google Scholar 

  38. Holmes AR, Shepherd MG (1988) Nutritional factors determine germ tube formation in Candida albicans. J Med Vet Mycol 26: 127

    Article  PubMed  CAS  Google Scholar 

  39. 37a.Horisberger M, Clerc MF (1988) Ultrastructural localization of anionic sites on the surface of yeast, hyphal and germ-tube forming cells of Candida albicans. Eur J Cell Biol 46: 444

    Google Scholar 

  40. Hubbard MJ, Sullivan PA, Shepherd MG (1985) Morphological studies of N-acetylglucosamine ind uced germ tube formation by Candida albicans. Can J Microbiol 31: 696

    Article  PubMed  CAS  Google Scholar 

  41. Hunsley D, Kay D (1976) Structure of the Neurospora hyphal apex: immunofluorescent localization of wall surface antigens. J Gen Microbiol 95: 233

    Google Scholar 

  42. Ito-Kuwa S (1986) Ultrastructural changes in the cell wall during germ tube and bud formation in the dimorphic fungus Candida albicans. Odontology (Tokyo) 73: 1586

    CAS  Google Scholar 

  43. Ito-Kuwa S, Aoki S, Watanabe T, Ehara T, Osafune T (1988) Fluorescence microscopic studies on mitochondria and mitochondrial nucleoids in a wild-type strain and respiratory mutants of Candida albicans. J Med Vet Mycol 26: 207

    Article  PubMed  CAS  Google Scholar 

  44. Katz D, Rosenberger RF (1971) Hyphal wall synthesis in Aspergillus nidulans: effect of protein synthesis inhibition and osmotic shock on chitin insertion and morphogenesis. J Bacteriol 108: 184

    PubMed  CAS  Google Scholar 

  45. Kaur S, Mishra P, Prasad R (1988) Dimorphism-associated changes in intracellular pH of Candida albicans. Biochim Biophys Acta 972: 277

    Article  PubMed  CAS  Google Scholar 

  46. Land GA, MacDonald WC, Stjernholm RL, Friedman L (1975) Factors affecting filamentation in Candida albicans’, relationship of the uptake and distribution of proline to morphogenesis. Infect Immun 11: 1014

    PubMed  CAS  Google Scholar 

  47. Lee KL, Buckley HR, Campbell CC (1975) An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 13: 148

    Article  PubMed  CAS  Google Scholar 

  48. MacDonald F, Odds FC (1980) Inducible proteinase of Candida albicans in diagnostic serology and in the pathogenesis of systemic candidosis. J Med Microbiol 13: 423

    Article  PubMed  CAS  Google Scholar 

  49. Marchessault RH, Deslandes Y (1980) Texture and crystal structure of fungal polysaccharides. In: Sandford PA, Matsuda K (eds) Fungal polysaccharide. American Chemical Society Symposium 126, Washington DC, p 221

    Google Scholar 

  50. Mitchell LH, Soll DR (1979) Temporal and spatial differences in septation during synchronous mycelium and bud formation by Candida albicans. Exp Mycol 3: 298

    Article  Google Scholar 

  51. Nombela C, Molina M, Cenamor R, Sanchez M (1988) Yeast beta-glucanases: a complex system of secreted enzymes. Microbiol Sci 5: 328

    PubMed  CAS  Google Scholar 

  52. Novick P, Botstein D (1985) Phenotypic analysis of temperature-sensitive yeast actin mutants. Cell 40: 405

    Article  PubMed  CAS  Google Scholar 

  53. Novick P (1985) Intracellular transport mutants of yeast. Trends Biochem Sci 10: 432

    Article  CAS  Google Scholar 

  54. Odds FC (1988) Candida and candidosis, 2nd edn. Bailliere Tindall, London

    Google Scholar 

  55. Okubo Y, Honma Y, Suzuki S (1979) Relationship between phosphate content and serological activities of the mannans of Candida albicans strains NIH A-207, NIH B-792, and J-1012. J Bacteriol 137: 677

    PubMed  CAS  Google Scholar 

  56. Pollard TD, Seiden SC, Maupin P (1984) Interaction of actin filaments with microtubules. J Cell Biol 99: 33

    Article  CAS  Google Scholar 

  57. Poulain D, Tronchin G, Dubremetz JF, Biguet J (1978) Ultrastructure of the cell wall of Candida albicans blastospores: study of its constitutive layers by the use of a cytochemical technique revealing polysaccharides. Ann Microbiol 129A: 141

    CAS  Google Scholar 

  58. Rahary L, Bonaly R, Lematre J, Poulain D (1985) Aggregation and disaggregation of Candida albicans germ-tube. FEMS Microbiol Lett 30: 383

    Article  CAS  Google Scholar 

  59. Rajasingham KC, Cawson RA (1978) “Spitzenkorper” in the invasive pseudohyphae of Candida albicans. Cell Struct Funct 3:265

    Google Scholar 

  60. Reiss E (1986) Molecular immunology of mycotic and actinomycotic infections. Elsevier, New York

    Google Scholar 

  61. Robertson NF (1965) The fungal hypha. Trans Br Mycol Soc 48: 1

    Article  Google Scholar 

  62. Scherwitz C, Martin R, Ueberberg H (1978) Ultrastructural investigations of the formation of Candida albicans germ tubes and septa. Sabouraudia 16: 115

    Article  PubMed  CAS  Google Scholar 

  63. Schnapp BJ, Vale RD, Sheetz MP, Reese TS (1985) Single microtubules from squid axoplasm support bidirectional movement of organelles. Cell 40: 455

    Article  PubMed  CAS  Google Scholar 

  64. Schroer TA, Kelly RB (1985) In vitro translocation of organelles along microtubules. Cell 40: 729

    Article  PubMed  CAS  Google Scholar 

  65. Sevilla MJ, Odds FC (1986) Development of Candida albicans hyphae in different growth media - variations in growth rates, cell dimensions and timing of morphogenetic events. J Gen Microbiol 132: 3083

    PubMed  CAS  Google Scholar 

  66. Sheetz MP, Chasan R, Spudich JA (1981) ATP-dependent movement of myosin in vitro: characterization of a quantitative assay. J Cell Biol 99: 1867

    Article  Google Scholar 

  67. Shepherd MG (1987) Cell envelope of Candida albicans. CRC Crit Rev Microbiol 15: 7

    Article  CAS  Google Scholar 

  68. Shepherd MG (1988) Morphogenetic transformation of fungi. In: McGinnis MR (ed) Current topics in medical mycology, vol 2. Springer, Berlin Heidelberg New York, p 278

    Chapter  Google Scholar 

  69. Shepherd MG, Sullivan PA (1983) Candida albicans germ-tube formation with immobilized GlcNAc. FEMS Microbiol Lett 17: 167

    Article  CAS  Google Scholar 

  70. Shepherd MG, Sullivan PA (1984) The control of morphogenesis in Candida albicans. J Dent Res 63: 435

    Article  PubMed  CAS  Google Scholar 

  71. Shepherd MG, Chiew YY, Ram SP, Sullivan PA (1980) Germ tube induction in Candida albicans. Can J Microbiol 26–21

    Google Scholar 

  72. Shepherd MG, Ghazali HM, Sullivan PA (1980) N-acetyl-D-glucosamine kinase and germ-tube formation in Candida albicans. Exp Mycol 4: 147

    Article  CAS  Google Scholar 

  73. Shepherd MG, Poulter RM, Sullivan PA (1985) Candida albicans: biology, genetics and pathogenicity. Annu Rev Microbiol 39: 579

    Article  PubMed  CAS  Google Scholar 

  74. Simonetti N, Strippoli V, Cassone A (1974) Yeast-mycelial conversion induced by N-acetyl- D-glucosamine in Candida albicans. Nature 250: 344

    Article  PubMed  CAS  Google Scholar 

  75. Sloat BF, Pringle JR (1978) A mutant of yeast defective in cellular morphogenesis. Science 200: 1171

    Article  PubMed  CAS  Google Scholar 

  76. Soll DR (1986) The regulation of cellular differentiation in the dimorphic yeast Candida albicans. Bio Essays 5: 5

    CAS  Google Scholar 

  77. Soli DR, Mitchell LH (1983) Filament ring formation in the dimorphic yeast Candida albicans. J Cell Biol 96: 486

    Article  Google Scholar 

  78. Staebell M, Soli DR (1985) Temporal and spatial differences in cell wall expansion during bud and mycelium formation in Candida albicans. J Gen Microbiol 131: 1467

    PubMed  CAS  Google Scholar 

  79. Staib F (1969) Proteolysis and pathogenicity of Candida albicans strains. Mycopathol Mycol Appl 37: 345

    Article  PubMed  CAS  Google Scholar 

  80. Stewart E, Gow N AR, Bowen DV (1988) Cytoplasmic alkalinization during germ tube formation in Candida albicans. J Gen Microbiol 134: 1079

    PubMed  CAS  Google Scholar 

  81. Sullivan PA, Shepherd MG (1982) Gratuitous induction by N-acetylglucosamine of germ-tube formation and enzymes for N-acetylglucosamine utilization in Candida albicans. J Bacteriol 151: 1118

    PubMed  CAS  Google Scholar 

  82. Sullivan PA, Chiew YY, Molloy C, Templeton MD, Shepherd MG (1983) An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation. Can J Microbiol 29: 1514

    Article  PubMed  CAS  Google Scholar 

  83. Summers DF, Grollman AP, Hasenclever HF (1964) Polysaccharide antigens of Candida cell wall. J Immunol 92: 491

    PubMed  CAS  Google Scholar 

  84. Surarit R, Gopal PK, Shepherd MG (1988) Evidence for a glycosidic linkage between chitin and glucan in the cell wall of Candida albicans. J Gen Microbiol 134: 1723

    PubMed  CAS  Google Scholar 

  85. Suzuki S (1981) In: Arnold WN (ed) Yeast cell envelopes biochemistry, biphysics and ultra- structure, vol 1. CRC, Boca Raton, p 85

    Google Scholar 

  86. Szaniszlo PJ (1985) Fungal dimorphism with emphasis on fungi pathogenic for humans. Plenum, New York

    Google Scholar 

  87. Taschdjian CL, Burchall JJ, Kozinn PJ (1960) Rapid identification of Candida albicans by filamentation in serum and serum substitutes. Am J Dis Child 99: 212

    CAS  Google Scholar 

  88. Tkacz JS, Lampen JL (1973) Surface distribution of invertase on growing Saccharomyces cells. J Bacteriol 113: 1073

    PubMed  CAS  Google Scholar 

  89. Tronchin G, Poulain D, Herbaut J, Biguet J (1981) Localization of chitin in the cell wall of Candida albicans by means of wheat germ agglutinin. Fluorescence and ultrastructural studies. Eur J Cell Biol 26: 121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shepherd, M.G. (1991). Morphogenesis in Candida albicans . In: Prasad, R. (eds) Candida Albicans. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75253-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75253-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75255-1

  • Online ISBN: 978-3-642-75253-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics