Skip to main content

Are Filterable Viruses Miniscule Bacteria?

  • Chapter
A History of Experimental Virology
  • 139 Accesses

Abstract

If “filterable viruses” were simply small bacteria, it should have been possible quickly to provide uninpeachable proof of this using the then known, newly developed methods in bacteriology and immunology. Following the principles set down by Koch and later augmented by other scientists for producing bacteriological and etiological evidence, pathogens — providing they were stainable — were identifiable under microscopes with a resolving power of 200 nm. Moreover, laboratories had numerous culture media and staining techniques at their disposal, in addition to suitable laboratory devices and enhanced infection models for experimental animal trials. The methods employed by Löffler and Frosch while researching FMD were a model for experiments with filterable viruses. Despite all of this, the opinion prevailed for a long time that this kind of causal organism was merely a very small bacteria. On the one hand, it seems incredible for scientists to have assumed that the limits of technical aids such as microscopes and filters coincided with a dividing line amongst microbes. On the other hand, nothing was undertaken experimentally to investigate other hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

A

  • Adams MA (1959) Bacteriophages. Interscience, New York

    Google Scholar 

  • Bechhold H (1929) Die Kolloide in Biologie und Medizin, 5th edn. Steinkopf, Dresden-Leipzig

    Google Scholar 

  • Burnet FM, Andrewes CH (1933) Ueber die Natur der filtrierbaren Vira. Zbl Bakt Orig/I 130: 161–183

    Google Scholar 

  • Doerr R und Hallauer C (edsX1938, 1939, 1944 ) Handbuch der Virusforschung. Erste und zweite Häfte; 1. Ergänzungsband. Springer, Wien

    Google Scholar 

  • Friedberger E und Pfeiffer R (edsX1919) Lehrbuch der Mikrobiologie. Fischer, Jena

    Google Scholar 

  • Gildemeister E, Haagen E, Waldmann O (eds)(1939) Handbuch der Viruskrankheiten. Fischer, Jena

    Google Scholar 

  • Goodpasture EW, Teague OT (1923) Transmission of the virus of herpes febrilis along nerves in experimentally infected rabbits. J med Res XLIV. 139–184

    Google Scholar 

  • Gross L (1971) Oncogenic viruses, 2nd edn. Pergamon Press, Oxford

    Google Scholar 

  • Kolle W, Kraus R, Uhlenhuth P (eds) (1929) Handbuch der pathogenen Mikroorganismen, vol 1, 3rd edn. Fischer, Jena; Urban & Schwarzenberg, Wien

    Google Scholar 

  • Medical Research Council (ed) (1930) A system of bacteriology in relation to medicine, vol VII, H M Stationery Office, London

    Google Scholar 

  • Paul J (1970) Cell and tissue culture, 4th edn. Livingstone, Edinburgh

    Google Scholar 

B

  • Bawden FC, Pirie NW (1937) The isolation and some properties of liquid crystalline substances from solanaceous plants infected with three strains of tobacco mosaic virus. Proc R Soc Lond, Ser B Biol Sci 123: 274–320

    Google Scholar 

  • Bawden FC, Pirie, Bernal, Fankuchen (1936) Liquid crystalline substances from virus-infected plants. Nature (London) 138: 1051–1052

    Google Scholar 

  • Bechhold H, Schlesinger M (1931) Die Grössenbestimmung von subvisiblem Virus durch Zentrifugieren. Biochem Z 236: 387–414

    CAS  Google Scholar 

  • Bechhold H, Villa L (1926) Die Sichtbarmachung subvisibler Gebilde. Z Hyg Infektionskr 105: 601–613

    Article  Google Scholar 

  • Bland JOW (1928) Filter and centrifuge experiments with guineapig vaccinia virus. Brit J Exp Pathol 9: 282–290

    Google Scholar 

  • Borrel A (1904) Sur les inclusions de Pepithelioma contagieux des oiseaux. C r Soc Biol 57: 642–643

    Google Scholar 

  • Burnet FM (1929) A method for the study of bacteriophage multiplication in broth. Brit J exp Pathol 10: 109–115

    Google Scholar 

  • Craigie J (1932) The nature of vaccinia flocculation, and observations on the elementary bodies of vaccinia. Brit J Exp Pathol 13: 259–268

    CAS  Google Scholar 

  • d’Herelle F (1917) Sur un microbe invisible antagonists des bacilles dysenteriques. C R Seances Acad Sci 165: 373–375

    Google Scholar 

  • Elford WJ (1931) A new series of graded collodion membranes suitable for general bacteriolgical use, especially in filterable virus studies. J Pathol Bacteriol 34: 505–521

    Article  CAS  Google Scholar 

  • Gildemeister E, Herzberg K (1925) Experimentelle Untersuchungen über Herpes. Dtsch med Wochenschr 51:97–98, 1647–51

    Google Scholar 

  • Goodpasture EW (1929) Cellular inclusions and the etiology of virus diseases. Arch Pathol 7: 114–132

    Google Scholar 

  • Goodpasture EW, Woodruff A, Buddingh GJ (1931) The cultivation of vaccine and other viruses in the chorioallantoic membrane of chick embryos. Science 74: 371–372

    Article  PubMed  CAS  Google Scholar 

  • Grüter W (1924) Das Herpesvirus, seine ätiologische und klinische Bedeutung. Münch med Wochenschr 1058–1060

    Google Scholar 

  • Hallauer C (1932) Über das Verhalten von Hühnerpestvirus in der Gewebekultur. Z Hyg Infektionskr 113: 61–74

    Article  Google Scholar 

  • Herzberg K (1933) Mikrophotographische Darstellung einer intrazellulären Virusentwicklung. Zbl Bakt I/Orig 130: 326–329

    Google Scholar 

  • John-Brooks (1937) Second international congress for microbiology, London 1936. Rep Proc, London 1937

    Google Scholar 

  • Kolle W, Turner G (1898) Über Schutzimpfungen und Heilserum bei Rinderpest. Z Hyg Infektionskr 29: 309–375

    Article  Google Scholar 

  • Kraus R, von Eisler, Fukuhara (1909) Über Adsorption des filtrierbaren Virus. Z Immunitätsforsch 1: 307–315

    Google Scholar 

  • Ledingham JCG (1931) The aetiological importance of the elementary bodies in vaccinia and fowl-pox. Lancet 11: 525–526

    Article  Google Scholar 

  • Levaditi C, Nicolau S (1923) Propriétés physiques des ultravirus neurothopes. C r Soc Biol 88: 66–69

    Google Scholar 

  • Lewis MR (1931) Production of tumors by means of purified (protein removed) tumor extracts. Am J Cane (Suppl) 15: 2248–2251

    Google Scholar 

  • MacCallum WG, Oppenheimer EH (1922) Differential centrifugalization. J Am Med Assoc 78: 410–411

    Article  Google Scholar 

  • Maisin J (1921) Adaption du bactériophage. C r Soc Biol 84: 468–472

    Google Scholar 

  • Malfitano G (1904) Sur la conductibilité électrique des solutionscolloidales. C r Acad Sci 139: 1221–1223

    CAS  Google Scholar 

  • Martin CJA (1896) A rapid method of separating colloids from crystalloids in solutions containing both. J Phys 20: 364–371

    CAS  Google Scholar 

  • Murphy JB, Rous P (1912) The behavior of chicken sarcoma implanted in the developing embryo. J exp med 15: 119–132

    Article  PubMed  CAS  Google Scholar 

  • Rivers TM, Haagen E, Muckenfuss RS (1928) A method of studying virus infection and virus immunity in tissue cultures.Proc Soc Exp Biol Med 26: 494–496

    Google Scholar 

  • Rous P, Johns FS (1916) A method for obtaining suspensions of living cells from the fixed tissues, and for the plating out of individual cells. J exp med 23: 549–554

    Article  PubMed  CAS  Google Scholar 

  • Roux, Yersin (1889) Contribution à l’étude de la diphthérie. Ann Inst Pasteur, Paris 3: 273–288

    Google Scholar 

  • Siedentopf H, Zsigmondy R (1903) Über die Sichtbarmachung und Grössen- bestimmung ultramikroskopischer Teilchen mit besonderer Anwendung von Goldrubingläsern. Ann Phys 10: 1–39

    CAS  Google Scholar 

  • Svedberg T (1934) Sedimentationsmessungen mit der Ultrazentrifuge. Naturwissenschaften 22: 225–231

    Article  Google Scholar 

  • Svedberg, Nichols JB (1923) Determination of size and distribution of particles by centrifugal methods. J Am Chem Soc 45: 2910–2917

    Article  Google Scholar 

  • Schlesinger M (1933) Die Bestimmung der Teilchengrösse und spezifischem Gewicht des Bakteriophagen durch Zentrifugierversuche. Z Hyg Infektionskr 114: 161–176

    Article  Google Scholar 

  • Schlesinger M (1934) Zur Frage der chemischen Zusammensetzung des Bakteriophagen. Biochem Z 273: 306–311

    CAS  Google Scholar 

  • Schulz EW, Hoyt J (1928) Studies on the antigenic properties of the ultraviruses. IV. The antigenic propertiesof herpes virus. J Immunol 15: 411–419

    Google Scholar 

  • Schulz EW, Bullock LT, Lawrence F (1928) Studies on the antigenic properties of the ultraviruses. II. The antigenic properties of vaccinia virus. J Immunol 15: 243–263

    Google Scholar 

  • Stanley WM (1935) Isolation of a crystalline protein possessing the properties of tobacco-mosaic virus. Science 81: 644–645

    Article  PubMed  CAS  Google Scholar 

  • Steinhardt E, Israeli C, Lambert RA (1913) Studies on the cultivation of the virus of vaccinia. J Infect Dis 13: 294–300

    Article  Google Scholar 

  • Sternberg GM (1896) Wissenschaftliche Untersuchungen über das spezifische Infektionsagens der Blattern und die Erzeugung künstlicher Immunität gegen diese Krankheit. Zbl Bakt I/Orig 19:805–815, 857–869

    Google Scholar 

  • Takahashi WN, Rawlins TE (1932/1933) Method for determining shape of colloidal particles; application in study of tobacco mosaic virus. Proc Soc Exp Biol Med 30: 155–157

    Google Scholar 

  • Tizzoni G, Centanni E (1892) Ueber die Art, bei Thieren die schon ausgebrochene Rabies zu heilen. Dtsch med Wochenschr 18: 624–626

    Article  Google Scholar 

  • Twort FW (1915) An investigation on the nature of ultramicroscopic viruses. Lancet 11: 1241–1243

    Article  Google Scholar 

  • Vallée, Carré (1921) Sur l’adsortion du virus apthteux. C R Acad Sci 172: 185–187

    Google Scholar 

  • Vinson CG (1927) Precipitation of the virus of tobacco mosaic. Science 66: 357–358

    Article  PubMed  CAS  Google Scholar 

  • Vinson CG, Petre AW (1931) Mosaic disease of tobacco. II. Activity of the virus precipitated by lead acetate. Contrib Boyce Thompson Inst Plant Res 3: 131–145

    Google Scholar 

  • Weyl T (1877) Beiträge zur Kenntnis thierischer und pflanzlicher Eiweisskörper. Z Physiol Chem 1: 72–100

    Google Scholar 

  • Woodruff CE, Goodpasture EW (1929) The infectivity of isolated inclusion bodies of fowl-pox. Am j pathol 5: 1–9

    PubMed  CAS  Google Scholar 

  • Woodruff AM, Goodpasture EW (1931) The susceptibility of the chorioallantoic membrane of chick embryos to infection with fowl-pox virus. Am j pathol 7: 210–222

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grafe, A. (1991). Are Filterable Viruses Miniscule Bacteria?. In: A History of Experimental Virology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75250-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75250-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75252-0

  • Online ISBN: 978-3-642-75250-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics