Skip to main content

Subsets of Rat CD4+ T Cells Defined by Their Differential Expression of Variants of the CD45 Antigen: Developmental Relationships and In Vitro and In Vivo Functions

  • Conference paper
Book cover Immunological Memory

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 159))

Abstract

Thymus-derived lymphocytes have been shown to mediate a wide range of immunological functions both as direct effectors in cell-mediated immunity and as helper or inducer cells for B cells, macrophages, bone marrow cells and other T cells. In addition, the lymphokines that they produce have been shown to act not only on leucocytes but also on non-bone marrow derived cells. This wide range of T-cell functions has only recently been fully appreciated, but early work using alloantisera in mice established that T cells with different functional specializations could be distinguished phenotypically on the basis of whether or not they expressed what came to be called the CD8 antigen (Cantor and Boyse 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arthur RP, Mason D (1986) T cells that help B cell responses to soluble antigen are distinguishable from those producing interleukin 2 on mitogenic or allogeneic stimulation. J Exp Med 163: 774–786

    Article  PubMed  CAS  Google Scholar 

  • Barclay AN, Jackson DI, Willis AC, Williams AF (1987) Lymphocyte specific heterogeneity in the rat leucocyte common antigen (T200) is due to differences in polypeptide sequence near the NH2- terminus. EMBO J 6: 1259–1264

    PubMed  CAS  Google Scholar 

  • Bell EB, Sparshott SM, Drayson MT, Ford WL (1987) The stable and permanent expansion of functional T lymphocytes in athymic nude rats after a single injection of mature T cells. J Immunol 139:1379–1384

    PubMed  CAS  Google Scholar 

  • Bellgrau D, Smilik D, Wilson DB (1981) Induced tolerance in F1 rats to anti-major histocompatibility complex receptors on parental T cells. J Exp Med 153: 1660–1665

    Article  PubMed  CAS  Google Scholar 

  • Beverley PCL (1986/87) Human T cell subsets. Immunol Lett 14: 263–267

    Article  Google Scholar 

  • Boom WH, Liano D, Abbas AK (1988) Heterogeneity of helper/inducer T lymphocytes II. Effects of interleukin-4 and interleukin 2-producing T cell clones on resting B lymphocytes. J Exp Med 167:1350–1363

    Article  PubMed  CAS  Google Scholar 

  • Cantor H, Boyse EA (1975) Functional subclasses of T lymphocytes bearing different Ly antigens. II. Cooperation between subclasses of Ly+ cells in the generation of killer activity. J Exp Med 141: 1390–1399

    Article  PubMed  CAS  Google Scholar 

  • Cherwinski H, Schumacher JH, Brown KD, Mossman TR (1987) Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Thl and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays and monoclonal antibodies. J Exp Med 166:1229–1244

    Article  PubMed  CAS  Google Scholar 

  • Cobbold S, Hale G, Waldmann H (1987) Non lineage, LFA-1 family and leukocyte common antigens: new and previously defined clusters. In: McMichael AJ (ed) Leukocyte typing III. Oxford University Press, Oxford, pp 788–807

    Google Scholar 

  • Dalchau R, Kirkley J, Fabre JW (1980) Monoclonal antibody to a human leukocyte specific membrane glycoprotein probably homologous to the leukocyte-common (L-C) antigen of the rat. Eur J Immunol 10: 737–744

    Article  PubMed  CAS  Google Scholar 

  • Dallman MJ (1982) Studies on the cellular basis of skin allograft rejection in the rat. D Phil thesis, Oxford

    Google Scholar 

  • Fabre JW, Williams AF (1977) Quantitative serological analysis of a rabbit anti-rat lymphocyte serum and preliminary biochemical characterization of the major antigen recognised. Transplantation 23:349–359

    Article  PubMed  CAS  Google Scholar 

  • Ford WL, Burr W, Simonsen M (1970) A lymph node weight assay for the graft-versus-host reactivity of rat lymphoid cells. Transplantation 10: 258–266

    Article  PubMed  CAS  Google Scholar 

  • Harp JA, Davis BS, Ewald SJ (1984) Inhibition of T cell responses to alloantigens and polyclonal mitogens by Ly-5 antisera. J Immunol 133: 10–15

    PubMed  CAS  Google Scholar 

  • Inaba K, Steinman RM (1984) Resting and sensitized T lymphocytes exhibit distinct stimulatory (antigen-presenting cell) requirements for growth and lymphokine release. J Exp Med 160: 1717–1735

    Article  PubMed  CAS  Google Scholar 

  • Joling P, Tielen FJ, Vaessen LMB, Huijbregts JMA, Rozing J (1985) New markers on T cell subpopulations defined by monoclonal antibodies. Transplant Proc 17: 1857–1863

    Google Scholar 

  • Killar L, MacDonald G, West J, Woods A, Bottomly K (1987) Cloned, la-restricted T cells that do not produce interleukin 4 (IL4)/B cell stimulatory factor 1 (BSF-1) fail to help antigen-specific B cells. J Immunol 138: 1674–1679

    PubMed  CAS  Google Scholar 

  • Lelchuk R, Playfair JHL (1985) Serum IL-2 inhibitor in mice. I. Increase during infection. Immunology 56: 113–118

    PubMed  CAS  Google Scholar 

  • Mason DW, Simmonds SJ (1988) The autonomy of CD8 + T cell in vitro and in vivo. Immunology 65: 249–257

    PubMed  CAS  Google Scholar 

  • Mason DW, Brideau RJ, McMaster WR, Webb M, White RAH, Williams AF (1980) Monoclonal antibodies that define T-lymphocyte subsets in the rat. In: Kennett RH, McKern TJ, Bechtol KB (eds) Monoclonal antibodies. Plenum, New York, pp 251–273

    Google Scholar 

  • Mason DW, Penhale WJ, Sedgwick JD (1987) Preparation of lymphocyte subpopulations. In: Klaus GGB (ed) Lymphocytes, a practical approach. IRL Press, Oxford, pp 35–54

    Google Scholar 

  • Metcalf D (1984) The hemopoietic colony stimulating factors. Elsevier, Amsterdam, p 33

    Google Scholar 

  • Morimoto C, Letvin NL, Distaso JA, Aldrich WR, Schlossman SF (1985) The isolation and characterization of the human suppressor inducer T cell subset. J Immunol 134: 1508–1515

    PubMed  CAS  Google Scholar 

  • Nelson DS, Sneider C (1974) Effect of normal mouse serum on mouse lymphocyte transformation in vitro. Eur J Immunol 4: 79–86

    Article  PubMed  CAS  Google Scholar 

  • Paterson DJ, Jefferies WA, Green JR, Brandon MR, Corthesy P, Puklavec M, Williams AF (1987) Antigens of activated rat T lymphocytes including a molecule of 50 000 M r detected only on CD4 positive T blasts. Mol Immunol 24: 1281–1290

    Article  PubMed  CAS  Google Scholar 

  • Pingel JR, Thomas ML (1989) Evidence that the leukocyte-common antigen is required for antigen- induced T lymphocyte proliferation. Cell 58: 1055–1065

    Article  PubMed  CAS  Google Scholar 

  • Ralph SJ, Thomas ML, Morton CC, Trowbridge IS (1987) Structural variants of human T200 glycoprotein (leukocyte-common antigen). EMBO J 6: 1251–1257

    PubMed  CAS  Google Scholar 

  • Reinherz, EL, Schlossman SF (1980) The differentiation and function of human T lymphocytes. A review. Cell 19: 821–827

    Article  PubMed  CAS  Google Scholar 

  • Saga Y, Tung JS, Shen FW, Boyse EA (1987) Alternative use of 5’ exons in the specification of Ly-5 isoforms distinguishing hematopoietic cell lineages. Proc Natl Acad Sci USA 84: 5364–5368

    Article  PubMed  CAS  Google Scholar 

  • Smith KA (1984) Interleukin 2. Annu Rev Immunol 2: 319–333

    Article  PubMed  CAS  Google Scholar 

  • Sparrow RL, McKenzie IFC (1983) A function for human T200 in natural killer cytolysis. Transplantation 36: 166–171

    Article  PubMed  CAS  Google Scholar 

  • Spickett GP, Brandon MR, Mason DW, Williams AF, Woollett GR (1983) MRC OX-22, a monoclonal antibody that labels a new subset of T lymphocytes and reacts with the high molecular weight form of the leukocyte-common antigen. J Exp Med 158: 795–810

    Article  PubMed  CAS  Google Scholar 

  • Standring R, McMaster WR, Sunderland CA, Williams AF (1978) The predominant heavily glycosylated glycoproteins at the surface of rat lymphoid cells are differentiation antigens. Eur J Immunol 8: 832–839

    Article  PubMed  CAS  Google Scholar 

  • Streuli M, Hall LR, Saga Y, Schlossman SF, Saito H (1987a) Differential usage of three exons generates at least five different mRNAs encoding human leukocyte common antigens. J Exp Med 166:1548–1566

    Article  PubMed  CAS  Google Scholar 

  • Streuli M, Matsuyama T, Morimoto C, Schlossman SF, Saito H (1987b) Identification of the sequence required for expression of the 2H4 epitope on the human leukocyte common antigens. J Exp Med 166: 1567–1572

    Article  PubMed  CAS  Google Scholar 

  • Streuli M, Morimoto C, Schrieber M, Schlossman SF, Saito H (1988) Characterization of CD45 and CD45R monoclonal antibodies using transfected mouse cell lines that express individual leukocyte-common antigens. J Immunol 141: 3910–3914

    PubMed  CAS  Google Scholar 

  • Takeuchi T, Rudd CE, Schlossman SF, Morimoto C (1987) Induction of suppression following autologous mixed lymphocyte reaction; role of a novel 2H4 antigen. Eur J Immunol 17: 97–103

    Article  PubMed  CAS  Google Scholar 

  • Terry LA, Brown MH, Beverley PCL (1988) The monoclonal antibody UCHLI, recognises a 180 000 MW component of the human leukocyte-common antigen, CD45. Immunology 64: 331–336

    PubMed  CAS  Google Scholar 

  • Thomas ML, Barclay AN, Gagnon J, Williams AF (1985) Evidence from cDNA clones that the rat leukocyte common antigen (T200) spans the lipid bilayer and contains a cytoplasmic domain of 80 000 M r Cell 41: 83–93

    Article  PubMed  CAS  Google Scholar 

  • Thomas ML, Reynolds PJ, Chain A, Ben-Neriah Y, Trowbridge IS (1987) B-cell variant of mouse T200 (Ly-5): evidence for alternative in RNA splicing. Proc Natl Acad Sci USA 84: 5360–5363

    Article  PubMed  CAS  Google Scholar 

  • Tonks NK, Charbonneau H, Diltz CD, Fischer EH, Walsh KA (1988) Demonstration that the leukocyte common antigen CD45 is a protein tyrosine phosphatase. Biochem 27: 8695–8701

    Article  CAS  Google Scholar 

  • Trowbridge IS (1978) Interspecies spleen-myeloma hybrid producing monoclonal antibodies against mouse lymphocyte surface glycoprotein, T200. J Exp Med 148: 313–322

    Article  PubMed  CAS  Google Scholar 

  • Trowbridge IS, Nilsen-Hamilton M, Hamilton RT, Bevan MJ (1977) Preliminary characterization of two thymus-dependent xenoantigens from mouse lymphocytes. Biochem J 163: 211–217

    PubMed  CAS  Google Scholar 

  • Williams AF, Galfré G, Milstein C (1977) Analysis of cell surfaces by xenogeneic myeloma-hybrid antibodies: differentiation antigens of rat lymphocytes. Cell 12: 663–673

    Article  PubMed  CAS  Google Scholar 

  • Woollett GR, Barclay AN, Puklavec M, Williams AF (1985) Molecular and antigenic heterogeneity of the rat leucocyte-common antigen from thymocytes and T and B lymphocytes. Eur J Immunol 15: 168–173

    Article  PubMed  CAS  Google Scholar 

  • Yakura H, Shen FW, Bourcet E, Boyse EA (1983) On the function of Ly-5 in the regulation of antigen- driven B cell differentiation. Comparison and contrast with Lyb-2. J Exp Med 157: 1077–1088

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Powrie, F., Mason, D. (1990). Subsets of Rat CD4+ T Cells Defined by Their Differential Expression of Variants of the CD45 Antigen: Developmental Relationships and In Vitro and In Vivo Functions. In: Gray, D., Sprent, J. (eds) Immunological Memory. Current Topics in Microbiology and Immunology, vol 159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75244-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75244-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75246-9

  • Online ISBN: 978-3-642-75244-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics