Novel Contexts of Computer Simulation

  • H. L. Frisch
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 45)


In this review paper we illustrate the application of standard simulation methods in statistical physics in two novel contexts. The first deals with the extraction of a dynamic relaxation time from a biased sampling Monte Carlo computation on equilibrium data. The specific example reviews a previously published Rouse model polymer chain dynamics derived from the Kramers potential with and without excluded volume interaction. The second deals with the approximate representation of continuous functions of many variables of physical interest in information retrieval or condensed matter/statistical physics in terms of continuous functions of one variable. The arguments of the latter can be stored once and for all in a computer memory.


Simple Shear Target Function Gyration Radius Exclude Volume Interaction Rouse Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.L. Frisch, N. Pistoor, A. Sariban, K. Binder and S. Fesjian, J. Chem. Phys. 89, 5194 (1988).CrossRefADSGoogle Scholar
  2. 2.
    H.A. Kramers, J. Chem. Phys. 14, 415 (1946).CrossRefADSGoogle Scholar
  3. 3.
    S. Fesjian and H.L. Frisch, J. Chem. Phys. 80, 4410 (1984).CrossRefADSGoogle Scholar
  4. 4.
    L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949).CrossRefADSGoogle Scholar
  5. 5.
    For a general review of the Monte Carlo technique for the simulation of lattice models for macromolecules see A. Baumgärtner, in Applications of the Monte Carlo Method in Statistical Physics, edited by K. Binder (Springer, Berlin, 1984); K. Kremer and K. Binder, Comput. Phys. Rep. 7., 259 (1988).Google Scholar
  6. 6.
    R.B. Bird, C.F. Curtiss, R.C. Armstrong, and O. Hassager Dynamics of Polymeric Liquids, 2nd ed. (Wiley, New York, 1987 ), Vol. 2, Chap. 15.Google Scholar
  7. 7.
    H.L. Frisch, C. Borzi,G. Ord, J.K. Percus and G.O. Williams, “Approximate Representation of Functions of Several Variables”, unpublished manuscript, submitted to Phys. Rev.Google Scholar
  8. 8.
    Reference 6, Chap. 11.Google Scholar
  9. 9.
    N. Pistoor, Diplomarbeit, Johannes-Gutenberg-Universität Mainz (unpublished); see also N. Pistoor and K. Binder, Colloid Polym. Sci. 266, 132 (1988).Google Scholar
  10. 10.
    J.C. le Guillou and J. Zinn-Justin, Phys. Rev. B 21, 3976 (1980).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    N. Madras and A. Sokal, J. Stat. Phys. 50, 109 (1988).CrossRefzbMATHADSMathSciNetGoogle Scholar
  12. 12.
    P.G. de Gennes, Scaling Concepts in Polymer Physics ( Cornell University, Ithaca, 1979 ).Google Scholar
  13. 13.
    A. Berretti and A.D. Sokal, J. Stat. Phys. 40, 483 (1985).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    V.I. Arnol’d, Dokl. Akad. Nank SSR, 108, 179 (1956).Google Scholar
  15. 15.
    A. Kolmogorov, Dokl. Akad. Nank SSR, 114, 679 (1957).MathSciNetGoogle Scholar
  16. 16.
    D. Hilbert, Bull. Amer. Math. Soc. 8, 461 (1902).CrossRefMathSciNetGoogle Scholar
  17. 17.
    G.G. Lorentz, “Representations of Functions”, Chelsea Publishing Co., New York, 1986.Google Scholar
  18. 18.
    I.P. Natanson, “Theory of Functions of a Real Variable”, Vol. 1, Ungar, New York, 1955.Google Scholar
  19. 19.
    K.D. Gibson and H.A. Scheraga, in “Structure and Expression”, Vol. 1, edited by M. Sarma and R. Sarma, Adenine Press, Guilderland, N.Y., 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • H. L. Frisch
    • 1
  1. 1.Department of ChemistryState University of New YorkAlbanyUSA

Personalised recommendations