Integrated Acousto-Optic Device Modules and Applications

  • Chen S. Tsai
Part of the Springer Series in Electronics and Photonics book series (SSEP, volume 23)


As discussed in Chaps.5–7, a great deal of advancements have been made in planar guided-wave acoustooptics. These advancements include the analytical treatment of complex interaction geometry, preparation of waveguide materials, design and fabrication of wide-band Bragg modulators and deflectors (Bragg cells), and the demonstration of a number of simple applications. Continuing progress in the fabrication and performance of other components including optical waveguides, waveguide lenses, diode laser sources and photodetector arrays, and their integration have significantly advanced the prospects for realization of a variety of integrated acousto-optic (AO) device modules and circuits. The most notable example of such modules is the integrated optic RF spectrum analyzer with LiNbO3 that has been presented in detail in Chap.7. This chapter provides a review on the spectrum analyzer modules on nonpiezoelectric substrate materials and a number of other planar AO device modules with LiNbO3 and GaAs as well as a spherical waveguide AO device module in LiNbO3 that are being developed. The results obtained thus far have shown that such AO device modules will have small substrate dimensions along the optical path and will also be inherently of high modularity and versatility. Consequently, such integrated AO device modules should find novel applications in wide band multichannel integrated- and fiber-optic communication, signal processing, and computing systems.


Surface Acoustic Wave Diffraction Efficiency Planar Waveguide Bragg Diffraction Channel Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 8.1
    R.G. Hunsperger, A. Yariv, A. Lee: Parallel end-butt coupling for optical integrated circuits. Appl. Opt. 16, 1026 (1977)ADSCrossRefGoogle Scholar
  2. 8.2
    E. Garmire: “Semiconductor Components for Monolithic Applications”, Chap.6, in Integrated Optics, ed. by T. Tamir, Topics Appl. Phys., Vol.7 (Springer, Berlin, Heidelberg 1975) pp.243–302; N. Bar-Chaim, S. Margalit, A. Yariv, I. Ury: GaAs Integrated Optoelectronics. IEEE Trans. ED-29, 1372–1381 (1982) U. Koren, S. Margalit, T.R. Chen, K.L. Yu, A. Yariv, N. Bar-Chaim, K.Y. Lau, I. Ury: Recent developments in monolithic integration of InGaAsP/InP optoelectronic devices. IEEE J. QE-18, 1653–1662 (1982) A. Yariv: The beginning of integrated optoelectronic circuits. IEEE Trans. ED-3, 1656 (1984) I. Hayashi: Research aiming for future optoelectronic integration. The Optoelectronics Joint Research Laboratory, IEE Proc.133, Pt.J, 237 (1986) O. Wada, T. Sakurai, T. Nakagami: Recent progress in optoelectronic integrated circuits. IEEE J. QE-22, 805 (1986)CrossRefGoogle Scholar
  3. 8.3
    I. Hayashi, M.B. Panish, P.W. Foy, S. Sumski: Junction lasers which operate continuously at room temperature. Appl. Phys. Lett. 17, 109–111 (1970) H. Kogelnik, C.V. Shank: Stimulated emission in a periodic structure. Appl. Phys. Lett. 18, 152–154 (1971) M. Nakamura, A. Yariv, H.W. Yen, S. Somekh, H.L. Garvin: Optically pumped GaAs surface laser with corrugation feedback. Appl. Phys. Lett. 22, 515 (1973) H. Yonezu, I. Sakuma, K. Kobayashi, T. Kamejima, M. Ueno, Y. Nannichi: A GaAs-AlxGa1-xAs double heterostructure planar strip laser. Jpn. J. Appl. Phys. 12, 1485–1492 (1973); Y. Suematsu, M. Yamada, K. Hayashi: Integrated twin-guide AlGaAs laser with multiheterostructure. IEEE J. QE-11, 457–460 (1975); M. Nakamura, K. Aiki, J. Umeida: CV7 operation of distributed-feedback GaAs-GaAlAs diode lasers at temperatures up to 300 K. Appl. Phys. Lett. 27, 403–405 (1975); A. Yariv: introduction to Optical Electronics, 2nd ed. (Holt/Rinehart/Winston, New York 1976) C.C. Ghizoni, J.M. Ballantyne, C.L. Tang: Theory of optical-waveguide distributed feedback. — A Green’s function approach. IEEE J. QE-13, 843 (1977) L.A. Coldren, K. Iga, B.I. Miller, J.A. Rentschler: GalnAsP/InP stripe-geometry laser with a reactive-ion-etched facet. Appl. Phys. 37, 681 (1980) Y. Suematsu: Advances in semiconductor lasers, Physics Today 32, 32–39 (May 1985)ADSCrossRefGoogle Scholar
  4. 8.4
    S. Wang: Principles of distributed feedback and distributed Bragg reflector lasers. IEEE J. QE-10, 413–427 (1974) F. K. Reinhart, R.A. Logan, C.V. Shank: GaAsAlxGa1-xAs injection lasers with distributed Bragg reflectors. Appl. Phys. Lett. 27, 45-58 (1975) H. Kawanishi, Y. Suematsu, K. Kishino: GaAsAlxGa1-xAs integrated twin-guide lasers with distributed Bragg reflector. IEEE J. QE-13, 64 (1977) W. Streifer, D.R. Scifres, R.D. Burnham: Coupled wave analysis of DFB and DBR lasers. IEEE J. QE-13, 134 (1977) H.W. Yen, W. Ng, I. Samid, A. Yariv: GaAs distributed Bragg reflector lasers. Opt. Commun. 17, 213 (1976) C.C. Tseng, D. Botez, S. Wang: Optically pumped epitaxial GaAs waveguide lasers with distributed Bragg reflectors. IEEE J QE-12, 549 (1976)CrossRefGoogle Scholar
  5. 8.5
    D.B. Ostrovsky, R. Poirier, L.M. Reibor, C. Deverdun: Integrated optical photodetector. Appl. Phys. Lett. 22, 263–464 (1973); H. Stoll, A. Yariv, R.G. Hunsperger, G.L. Tangonan: Proton-implanted optical waveguide detectors in GaAs. Appl. Phys. Lett. 23, 664 (1973) G. E. Stillman, C.M. Wolfe, I. Melngailis: Monolithic integrated InxGa1-xAs Schottky-barrier waveguide detector. Appl. Phys. Lett. 25, 36 (1974) C.C. Tseng, S. Wang: Integrated grating-type Schottky-barrier photodetector with optical channel waveguide. Appl. Phys. Lett. 26, 632 (1975) J.T. Boyd, C.L. Chen: Integrated optical solicon photodiode array. Appl. Opt. 15, 1389 (1976) J.L. Merz, R.A. Logan: Integrated GaAs-AlxGa1-x injection lasers and detectors with etched reflectors. Appl. Phys. Lett. 30, 530 (1977) G.M. Borsuk, A. Turley, G.E. Marx, E.C. Malarkey: Photosenser array for integrated optical spectrum analyzer systems. Proc. SPIE 176, 109 (1979) J.C. Grammel, J.M. Ballantyne: A high speed photoconductive detector and waveguide structure. Appl. Phys. Lett. 36, 149–152 (1980) G.W. Anderson, A.E. Spezio: Photodetector approaches for acousto-optics spec-trum analysis: Proc. SPIE 477, 161–164 (1984) I. Melngailis: Laser sources and detectors for guided-wave optic signal processsing. Proc. SPIE 185 (1979) N. Bar-Chaim, K. Y. Lau, I.Ury, A. Yariv: Gallium Aluminum Arsenide/Gallium Arsenide Integrated Optical Repeater. Seventh Topical Meeting on Integrated and Guidesd-Wave Optics, Tech. Digest., pp.TuDl-4, IEEE Cat.#84CH 1997-6, Kissimmeee, Florida, April 24–26, 1984; G. Eisenstein, T.P. Lee, R.S.Tucker, C.A. Burrus, W.B. Sessa, P. Besomi: InGaAsP semiconductor lasers with integrated semiconductor amplifier-modulators at 1.3 /im wavelength. Ibid, pp.TuD2-4Google Scholar
  6. 8.6
    K.W. Loh, W.S.C. Chang, W.R. Smith, T. Grudkowski: Bragg coupling efficiency for guided acoustooptic interaction in GaAs. Appl. Opt. 15, 156–166 (Jan. 1976) O. Yamazaki, C.S. Tsai, M. Umeda, L.S. Yap, CJ. Lii, K. Wasa, J. Merz: Guided-wave acousto-optic interactions in GaAs-ZnO composite structure, in 1982 Ultrasonics Symposium Proc., 418–420, IEEE Cat. No. 82CH1823-4 C.J. Lii, C.C. Lee. O. Yamazaki, L.S. Yap, K. Wasa, J. Merz, C.S. Tsai: Efficient Wideband Acoustooptic Bragg Diffraction in GaAs — GaAlAs Waveguide Structure. Proc. of 1983 International Conf. on Integrated Optics and Optical Fiber Communications, pp. 30B3-2 to -4 (Aug. 1983) A.A. Ilyich, S.M. Kikkarin, D.V. Petrov, A.V. Tsarev, I.B. Yakovkin: A comparison of acoustooptic interaction in LiNbO3 and GaAs waveguides. Opt. Commun. 56, 161–166 (1985)ADSCrossRefGoogle Scholar
  7. 8.7
    C.J. Lii, C.S. Tsai, C.C. Lee: Wideband guided-wave acousto-optic Bragg cells in GaAs-GaAs-GaAlAs waveguide. IEEE J. QE-22, 868–872 (1986); C. J. Lii, C.S. Tsai, C.C. Lee, Y.A. Abdelrazek: Wideband Acoustooptic Bragg Cells in GaAs Waveguide. Proc. 1986 IEEE Ultrasonics Symp. IEEE Cat. No. 86CH2375-4, pp.429–433 Y. Abdelrazek, C.S.Tsai: High-performance acoustooptic Bragg cells in ZnO-GaAs waveguide at GHz frequencies. Optoelectronics — Device and Technologies 4, 33–37 (1989)CrossRefGoogle Scholar
  8. 8.8
    T.Q. Vu, J.A. Norris, C.S. Tsai: Planar waveguide lenses in GaAs by using ion milling. Appl. Phys. Lett. 54, 1098–1100 (1989)ADSCrossRefGoogle Scholar
  9. 8.9
    S. Valette, J. Lizet, P. Mottier, J.P. Jadot, S. Renard, A. Fournier, A.M. Grouillet, P. Gidons, H. Denis: Integrated optical spectrum analyzer using planar technology on oxidized silicon substrate. Electron. Lett. 19, 883–885 (1983); and Integrated-optical circuits achieved by planar technology on silicon substrates: application to the optical spectrum analyzer. IEEE Proc. 131, Pt.H, 325–332 (1984)ADSCrossRefGoogle Scholar
  10. 8.10
    T. Suhara, T. Shiono, H. Nishihara, J. Koyama: An integrated-optic Fourier processor using an acousto-optic deflector and Fresnel lenses in As2S3 waveguide. J. Lightwave Techn. LT-1, 624–630 (1983)ADSCrossRefGoogle Scholar
  11. 8.11
    F.S. Hickernell: Zink-oxide thin-film surface wave transducers. Proc. IEEE 64, 631 (1976); G. S. Kino, R.S. Wagers: Theory of interdigital couplers on nonpiezoelectric substrates. J. Apppl. Phys. 44, 1480 (1973)CrossRefGoogle Scholar
  12. 8.12
    See, for example, M.L. Dakss, L. Kuhn, P.F. Heidrich, B.A. Sott Appl. Phys. Lett. 16, 523 (1970) H. Kogelnik, T.P. Sosnowski: Bett System Tech. J. 49, 1602 (1970) T. Tamir, H.L. Bertoni: J. Opt. Soc. Am. 61, 1397 (1971) C.C. Ghizoni, B.U. Chen, C.L. Tang: IEEE J. QE-12, 69 (1976) Many others cited in Integrated Optics, 2nd edn., ed. by T. Tamir, Topics Appl. Phys., Vol.7 (Springer, Berlin, Heidelberg 1979) Chap.3ADSCrossRefGoogle Scholar
  13. 8.13
    R.A. Sprague, K.L. Koliopaulos: Time-integrating acousto-optic correlator. Appl. Opt. 15, 89 (1976); R.A. Sprague: A review of acoustooptic signal correlations. Opt. Eng. 16, 467 (1977); T.M. Turpin: Time-integrating optical processor. SPIE 154, 196 (1978) I. W. Yao, C.S. Tsai: A time-integrating correlator using guided-wave acousto-optic interactions, in 1978 IEEE Ultrasonics Symposium Proc., IEEE Cat. No. 78CH1344-1SU, pp.87–90; N.J. Berg, I.J. Abramovitz, J.N. Lee, M.W. Casseday: A niew surface-wave acousto-optic time integrating correlator. Appl. Phys. Lett. 36, 256–258 (1980)ADSCrossRefGoogle Scholar
  14. 8.14
    C.S. Tsai, J.K. Wang, K.Y. Liao: Acousto-optic time-integrating correlators using integrated optics technology. Proc. SPIE 180, 160–162 (1979)Google Scholar
  15. 8.15
    K.Y. Liao, C.C. Lee, C.S. Tsai: Time-integrating correlator using guided-wave anisotropic acousto-optic Bragg diffraction and hybrid integration. 1982 Topical Meeting on Integrated and Guided-Wave Optics, Pacific Grove, CA, Technical Digest, WA4-1 to 4, IEEE Cat. No. 82CH1719-4; C.C. Lee, K.Y. Liao, C.S. Tsai: Acousto-optic time-integrating correlator using hybrid integrated optics. 1982 IEEE Ultrasonics Symposium Proc., 405–407, IEEE Cat. No. 82CH1823-4Google Scholar
  16. 8.16
    E.T. Aksenov, A.V. Kukharev, A.A. Lipovskii, A.V. Pavlenko. Acoustooptic convolver using integrated-optic elements. Sov. Tech. Phys. Lett. 7, 513–514 (Oct. 1981); T. Kitano, H. Nioshimoto, N. Takado: Hybrid-Integrated Acoustooptic Time- Intergrating Correlator. IEEE Ultrasonics Symp., Nov. 14–16, 1984 Dallas Texas, Tech. Digest, p. 14Google Scholar
  17. 8.17
    C.S. Tsai, I.W. Yao, B. Kim, Le T. Nguyen: Wideband guided-wave anisotropic acousto-optic Bragg diffraction in LiNb03 waveguides. 1977 Int’l. Conf. on Integrated Optics and Fiber Communications, Tokyo, Japan, Digest of Technical Papers, pp. 57–60Google Scholar
  18. 8.18
    Q. Li, C.S. Tsai: An acousto-optic time-integrating correlator module with hybrid integration in a spherical waveguide, (unpublished)Google Scholar
  19. 8.19
    C.S. Tsai, C.C. Lee, K.Y. Liao: RF correlation with integrated acousto-optic modules. 1982 WESCON, Anaheim, CAGoogle Scholar
  20. 8.20
    D.Y. Zang, C.S. Tsai: Single-mode waveguide microlenses and microlens arrays fabrication in LiNbO3 using titanium-indiffusion proton-exchange technique. Appl. Phys. Lett. 46, 703–705 (1985)ADSCrossRefGoogle Scholar
  21. 8.21
    C.S. Tsai, C.L. Chang, C.C. Lee, K.Y. Liao: Acousto-optic Bragg deflection in channel optical waveguides. 1980 Topical Meeting on integrated and Guided- Wave Optics, in: Technical Digest of Post-Deadline Papers, PD7-1 to 4, IEEE Cat. No. 80CH1489-4QEAGoogle Scholar
  22. 8.22
    C.L. Chang, C.S. Tsai: GHz bandwidth optical channel waveguide TIR switches and 4x4 switching networks, at 1982 Topical Meeting on integrated and Guided-Wave Optics, 6–8 Jan, Pacific Grove, CA, in: Technical Digest, ThD2-1 to 4, IEEE Cat. No. 83CH1719-4Google Scholar
  23. 8.23
    C.S. Tsai, C.T. Lee, C.C. Lee: Efficient acousto-optic diffraction in crossed-channel waveguides and resultant integrated optic module. 1982 IEEE Ultrasonics Symposium Proc., 422–425, IEEE Cat. No. 82CH1823-4Google Scholar
  24. 8.24
    C.S. Tsai, C.T. Lee: Optical frequency shifting using acousto-optic diffraction in crossed-channel waveguides in LiNbO3 (unpublished)Google Scholar
  25. 8.25
    C.H. von Helmolt, R.T. Kersten, W. Auch, W. Steudle: Bragg switch/SSB-modulator with integrated optic single-mode waveguides, in: Proc. of Second European Conf. on integrated Optics, IEEE Publ. No. 227, 132–135 (1983)Google Scholar
  26. 8.26
    H.P. Hsu, A.F. Milton, W.K. Burns: Multiple fiber end fire coupling with single-mode channel waveguides. Appl. Phys. Lett. 33, 603–605 (1978)ADSCrossRefGoogle Scholar
  27. 8.87
    C.S. Tsai, D.Y. Zang, P. Le: An integrated acousto-optic module for optical computing, postdeadline paper presented at Topical Meeting on Optical Computing, sponsored by OSA/IEEE, 15–18 March 1985, Incline Village, Nevada, in: Technical Digest, PD5-1 to 4Google Scholar
  28. 8.28
    C.S. Tsai, D.Y. Zang, P. Le: Guided-wave acousto-optic Bragg diffraction in a LiNbO3 channel-planar waveguide with application to optical computing. Appl. Phys. Lett. 47, 549–551 (1985) C.S. Tsai: LiNbO3-based integrated-optic device modules for communication, computing, and signal processing. CLEO’86, San Francisco, Calif., Techn. Digest 44–46 (IEEE Cat. No.86 CH2274-9) C.S. Tsai: Titanium-indiffused proton-exchanged microlens-based integrated optic Bragg modulator modules for optical computing. Optical and Hybrid Computing, ed. by H.H. Szu, SPIE 634 409–421 (Jan. 1987) C.S. Tsai: Integrated-optical device modules in LiNbO3 for computing and signal processing. J. Mod. Opt. 35, 965–977 (1988)ADSCrossRefGoogle Scholar
  29. 8.29
    M. DeMicheli, J. Botineau, P. Sibillot, D.B. Ostrowsky, M. Papuchon. Fabrication and characterization of titanium-indiffused proton-exchanged (TIPE) waveguide in LiNbO3. Opt. Comm. 42, 101–103 (1982)ADSCrossRefGoogle Scholar
  30. 8.30
    R.V. Schmidt, I.P. Kaminow: Metal-diffused optical waveguides in LiNb03. Appl. Phys. Lett. 25, 458 (1974)ADSCrossRefGoogle Scholar
  31. 8.31
    J.L. Jackel, C.E. Rice, J.J. Veselka: Proton-exchange for high-index waveguide in LiNb03. Appl. Phys. Lett. 47, 607–608 (1983)Google Scholar
  32. 8.32
    D.Y. Zang, C.S. Tsai: Titanium-indiffused proton-exchanged waveguide lenses in LiNb03 for optical information processing. Appl. Opt. 25, 2264–2271 (1986)ADSCrossRefGoogle Scholar
  33. 8.33
    Proc. IEEE, Special Issue on Optical Computing, 758–965 (1984)Google Scholar
  34. 8.34
    A. Vander Lugt Signal detection by complex spatial filtering. IEEE Trans. Inform Theory IT-10, 139 (1964) H.T. Kung: Why systolic architectures?. Computer 15, 37 (1978); J.W. Goodman, A.R. Dias, L.M. Woody: Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms. Opt. Lett. 2, 1 (1978) M. Tur, J.W. Goodman, B. Moslchi, J.E. Broon, J.H. Shaw: Fiber-optic signal processor with application to matrix-vector multiplication and lattice filtering. Opt. Lett. 7, 463 (1982) H.J. Caulfield, W.J. Rhodes, M.J. Foster, S. Horvitz: Optical implementation of systolic array processing. Opt. Comm. 40, 86 (1981) T.M. Turpin: Spectrum analysis using optical processing. Proc. IEEE 69, 79 (1981) D. Casasent: Acousto-optic transducers in iterative optical vector-matrix processors. Appl. Opt. 21, 1958 (1982) A.W. Lohmann: Chances for optical computing. Optik 65, 9 (1983) R.A. Athale, W.C. Collins, P.D. Stilwell: High accuracy matrix multiplication with outer product optical processor. Appl. Opt. 22, 368 (1983) H.J. Caulfield, J.A. Neff, W.T. Rhodes: Optical computing: the coming revolution in optical signal processing. Laser Focus 19, 100 (1983) R.P. Bocker, S.R. Clayton, K. Bromley: Electro-optical matrix multiplication using the twos complement arithmetic for improved accuracy. Appl. Opt. 22, 2019 (1983) R.P. Bocker, W.J. Miceli: Optical matrix-vector multiplications using floating point arithmetic. OSA Topical Meeting on Optical Computing, Incline Village, Nev. (1985), Techn. Digest TuD 3-1 to 4 C.M. Verber, R.P. Kennan,Integrated optical circuit for numerical computation. Proc. SPIE 408, 57 (1983) C. M. Verber. Integrated-optical approaches to numerical optical processing. Proc. IEEE 72, 942–953 (1984) A.A. Sawchuk, T.C. Strand: Digital optical computing. Proc. IEEE 72, 758 (1984) A. Huang: Architectural considerations involved in the design of an optical digital computer. Proc. IEEE 72, 780 (1984) P. Guilfoyle: Systolic acousto-optic binary convolver. Opt. Eng. 23, 20 (1984) J.L. Jewell, M.C. Rushford, H.M. Gibbs: Use of a single nonlinear Fabry-Perot etalon as optical logic gates. Appl. Phys. Lett. 44, 172–174 (1984) P.W. Smith: All-Optical Switching and Logic: Potential and Limitations. 1984 Conf. on Lasers and Electro-Optics, June 19–22, Anaheim, California, Tech. Digest, p. 184, IEEE Cat.#CH 1965–3 S.D. Smith: Optical bistability, photonic logic, and optical computation: Appl. Opt. 25, 1550–1564 (1986) D. Psaltis: Two-dimensional optical processing using one-dimensional input devices. Proc. IEEE 72, 962 (1984) T.J. Bicknell, D. Psaltis, A.R. Tanguay: Integrated-optical synthetic aperture radar processor. OSA Annual Meeting (1985) Paper TuE6CrossRefGoogle Scholar
  35. 8.35
    J.F. St. Ledger, E.A. Ash: Laser beam modulation using grating diffraction effects. Electron. Lett. 4, 99–100 (1968) M.A.R.P. De Barros: “High-speed electro-optic diffraction modulator for baseband operation”. Proc. Inst. Elec. Eng. 119, 807–814 (1972) J.N. Polky, J.H. Harris: Interdigital electro-optic thin-film modulator. Appl. Phys. Lett. 21, 307–309 (Oct. 1972) J.M. Hammer, W. Phillips: Low-loss single-mode optical waveguides and efficient high-speed modulators of LiNbxTa1-xO3 545–547 (1974) Y.K. Lee, S. Wang: Electrooptic Bragg deflection modulators: Theoretical and experimental studies. Appl. Opt. 15, 1565 (1976) X. Cheng, C.S. Tsai: Electrooptic Bragg diffraction modulators in GaAs/ ALGaAs heterostructure waveguides. J. Lightwave Tech. 6, 809–817 (1988)CrossRefGoogle Scholar
  36. 8.36
    E.N. Glytsis, T.K. Gaylord, M.G. Moharam: Electric Field, Permittivity, and Strain Distribution Induced by Interdigitated Electrodes on Electro-Optic Waveguides. J. Light Wave Tech. LT-5, 668–683 (1987)Google Scholar
  37. 8.37
    D.Y. Zang, P. Le, C.S. Tsai: “Integrated Electrooptic Bragg Modulator Modules for Optical Computing”, Tech. Digest, 2nd Topical Meeting on Optical Computing, Incline Village, Nev. (1987) pp. 193–196Google Scholar
  38. 8.38
    P. Le, D.Y. Zang, C.S. Tsai: Integrated electrooptic Bragg modules for matrix-vector and matrix-matrix multiplications. Appl. Opt. 27, 1780–1785 (1988) C.S. Tsai, D.Y. Zang, P. Le: High-packing density integrated optic device modules in LiNbO3 for programmable correlation of binary sequences. Opt. Lett. 14, 889–891 (1989)ADSCrossRefGoogle Scholar
  39. 8.39
    S. Ezekiel, S.R. Balsamo: Passive ring resonator laser gyroscope. Appl. Phys. Lett. 30, 478–480 (May 1977) J.L. Davis, S. Ezekiel: Closed-loop, low-noise fiber-optic rotation sensor. Opt. Lett. 6, 505 (1981)ADSCrossRefGoogle Scholar
  40. 8.40
    R.F. Cahill, E. Udd: Phase-nulling fiber-optic laser gyro. Opt. Lett. 4, 93 (1979)ADSCrossRefGoogle Scholar
  41. 8.41
    K.K. Wong, S. Wright: An optical serrodyne frequency translator. Proc. 1st Europ. Conf. on Integrated Optics. IEEE Conf. Publ. 201, 63 (1981)Google Scholar
  42. 8.42
    F. Heismann, R. Ulrich: Integrated-optical single-sideband modulator and phase shifter. IEEE J. QE-18, 767 (1982)Google Scholar
  43. 8.43
    B. Culshaw, M.G.F. Wilson: Integrated optic frequency shifter modulator. Electron. Lett. 17, 135 (1981)ADSCrossRefGoogle Scholar
  44. 8.44
    F. Heismann, R. Ulrich: Integrated-optical frequency translator with strip waveguide. Appl. Phys. Lett. 45, 490 (1984)ADSCrossRefGoogle Scholar
  45. 8.45
    M. Izutsu, S. Shikama, T. Sueta: Integrated optical SSB modulator and frequency shifter. IEEE J. QE-17, 2225 (1981)Google Scholar
  46. 8.46
    K. Nosu, S.C. Rashleigh, H.F. Taylor, J.F. Weller: Acousto-optic frequency shifter for birefringent fiber. Electron. Lett. 19, 816 (1983)ADSCrossRefGoogle Scholar
  47. 8.47
    W.P. Risk, R.C. Youngquist, G.S. Kino, H.J. Shaw: Acousto-optic frequency shifting in birefringent fiber. Opt. Lett. 9, 309 (1984)ADSCrossRefGoogle Scholar
  48. 8.48
    R.H. Kingston, R.A. Becker, F.J. Leonberger: Broadband guided-wave optical frequency translator using an electro-optical Bragg array. Appl. Phys. Lett. 42, 759 (1983)ADSCrossRefGoogle Scholar
  49. 8.49
    L.M. Johnson, R.A. Becker, R.H. Kingston: Integrated-optical channel-waveguide frequency shifter, at 1984 Topical Meeting on integrated and Guided- Wave Optics, in: Technical Digest, IEEE Cat. Not. S4CH1997-6, p.WD4-lGoogle Scholar
  50. 8.50
    C.S. Tsai, C.L. Chang, C.C. Lee, K.Y. Liao: Acousto-optic Bragg deflection in channel optical waveguides. 1980 Topical Meeting on Integrated and Guided-Wave Optics, Technical Digest of Post-Deadline Papers, IEEE Cat. No. 80CH1489-4QEA, pp.PD7-lGoogle Scholar
  51. 8.81
    C.S. Tsai, C.T. Lee, C.C. Lee: Efficient acousto-optic diffraction in crossed channel waveguides and resultant integrated optic module. 1982 IEEE Ultrasonics Symposium Proc., IEEE Cat. No. 82CH1823-4. pp.422–425Google Scholar
  52. 8.52
    C.S. Tsai, Q. Li: Wideband optical frequency shifting using acousto-optic Bragg diffraction in a LiNb03 spherical waveguide. Proc. 5th Int’l Conf. on Integrated Optics and Optical Fiber Communications, Venezia, Italy (1985), Techn. Digest 129–132Google Scholar
  53. 8.53
    C.S. Tsai, Z.Y. Cheng: Novel guided-wave acousto-optic frequency shifting scheme using Bragg diffractions in cascade. Appl. Phys. Lett. 54, 1616–1618 (1989) Z.Y. Cheng, C.S. Tsai: A novel integrated acoustooptic frequency shifter. J. Lightwave Tech. LT-7, 1575–1580 (1989)ADSCrossRefGoogle Scholar
  54. 8.54
    T.W. Bristol, W.R. Jones, P.B. Snow, W.R. Smith: “Applications of Double Electrodes in Acoustic Surface Wave Device Design”, 1972 IEEE Ultrasonics Symp. Proc., IEEE Cat.#72 CH708-8SU, p.343Google Scholar
  55. 8.55
    T.W. Grudkowdki, G.K. Montress, M. Gilden, J.B. Black: “GaAs Monolithic SAW Devices for Signal Processing and Frequency Control”, 1981 Ultrasonics Symp. Proc., pp. 88 – 97 (1980)Google Scholar
  56. 8.56
    R.T. Webster, P.H. Carr. “Rayleigh Waves on Gallium Arsenide”, to be published in the Proceedings of Lord Rayleigh Centenery Symposium on Rayleigh Waves, sponsored by Frank Prize Funds and Royal Inst, of England, July 14–18, 1985Google Scholar
  57. 8.57
    A.F. Slobodnik: GaAs acoustic-surface-wave propagation losses at 1000 MHz. Electron. Lett. 8, 307–309 (June 1972)CrossRefGoogle Scholar
  58. 8.58
    M.R. Melloch, R.S. Wagers: Propagation loss of the acoustic pseudosurface wave on (ZXt) 45° GaAs. Appl. Phys. Lett. 43, 1008–1009 (Dec. 1983)ADSCrossRefGoogle Scholar
  59. 8.59
    R.T. Webster: 1.5 GHz GaAs surface acoustic wave delay lines, IEEE Trans. Microwave Theory Tech. MIT-33, 824–827 (SEpt. 1985 )ADSCrossRefGoogle Scholar
  60. 8.60
    R. Ulrich, R.J. Martin: Geometrical optics in film light guides. Appl. Opt. 10, 2077 (1971)ADSCrossRefGoogle Scholar
  61. 8.61
    C.C. Righini, V. Russo, S. Sottini, G. Toraldo de Francia: Geodesic lenses for guided optical waves. Appl. Opt. 12, 1477 (1973)ADSCrossRefGoogle Scholar
  62. 8.62
    F. Zernike: Luneberg Lens for optical waveguide use. Opt. Commun. 12, 379 (1974)ADSCrossRefGoogle Scholar
  63. 8.63
    D.B. Anderson, R.L. Davis, J.T. Boyd, R.R. August Comparison of optical waveguide lens technologies. IEEE J. QE-13, 275 (1977)Google Scholar
  64. 8.64
    P.K. Tien, S. Riva-Sangeverino, R.J. Martin, G. Smolinsky: Two-layered construction of integrated optical circuits and formation of thin-film prism, lenses, and reflectors. Appl.Phys. Lett. 24, 547 (1974)ADSCrossRefGoogle Scholar
  65. 8.65
    E. Spiller, J.S. Harper. High-resolution lenses for optical waveguides. Appl. Opt. 13, 2105 (1974)ADSCrossRefGoogle Scholar
  66. 8.66
    C.M. Verber, D.W. Vahey, V.E. Wood: Focal properties of geodesic waveguide lenses. Appl. Phys. Lett. 28, 514 (1976)ADSCrossRefGoogle Scholar
  67. 8.67
    B. Chen, E. Marom, A. Lee: Geodesic lenses in single-mode LiNbOa waveguides. Appl. Phys. Lett. 31, 263 (1977)ADSCrossRefGoogle Scholar
  68. 8.68
    W.H. Southwell: Inhomogeneous optical waveguide lens analysis. J. Opt. Soc. Am. 67, 1004–1010 (1977)ADSCrossRefGoogle Scholar
  69. 8.69
    S.K. Yao, D.E. Thomson: Chirp-grating lens for guided wave optics. Appl. Phys. Lett. 33, 635 (1978) G.I. Hatakoshi, S.I.. Tanaka: Grating lenses for integrated optics. Opt. Lett. 2, 142 (1978)ADSCrossRefGoogle Scholar
  70. 8.70
    B. Chen, O.G. Ramer: Diffraction-limited geodesic lens for integrated optic circuit. IEEE J. QE-15, 853 (1979)Google Scholar
  71. 8.71
    D. Mergerian, E.C. Malarkey, R.P. Pautienus, J.C. Bradley: Diamond machined geodesic lenses in LiNbO3. Proc. SPIE 176, 85 (1979)Google Scholar
  72. 8.72
    P. Mottier, S. Valetten Integrated Fresnel lens on thermally oxidized silicon substrate. Appl. Phys. Lett. 20, 1630 (1981)Google Scholar
  73. 8.73
    T. Suhara, K. Kobayashi, J. Koyama: Graded-index Fresnel lenses for integrated optics. Appl. Phys. Lett. 21, 1966 (1982)Google Scholar
  74. 8.74
    C. Warren, S. Forouhar, W.S.C. Chang, S.K. Yao: Double ion exchanged chirp grating lens in lithium nibate waveguide. Appl. Phys. Lett. 43, 424 (1983)ADSCrossRefGoogle Scholar
  75. 8.75
    G.C. Righini, V. Russo, S. Sottini, G. Toraldo de Trancia: Thin film geodesic lens. Appl. Opt. 11, 1442 (1972)ADSCrossRefGoogle Scholar
  76. 8.76
    Q. Li, C.S. Tsai, S. Sottini, C.C. Lee: Acousto-optic interaction in a LiNbO3 spherical waveguide. 1984 Topical Meeting on Integrated and Guided-Wave Optics, Kissimmee, FL, Technical Digest, IEEE Cat. No. 84CH1997-6 pp.TuB2-l to 4Google Scholar
  77. 8.77
    Q. Li, C.S. Tsai, S. Sottini, C.C. Lee: Light propagation and acousto-optic interaction in a LiNb03 spherical waveguide. Appl. Phys. Lett. 46, 707–709(1985)ADSCrossRefGoogle Scholar
  78. 8.78
    H.I. Smith, F.J. Bachner, N. Efremow: A high-yield photolithographic technique for surface wave devices. J. Electrochem. Soc. 188, 821 (1971)CrossRefGoogle Scholar
  79. 8.79
    W. Chen, P. Le, C.S. Tsai: Acoustooptic interaction between optical whistling gallery waves and surface acoustic waves in a spherical surface (unpublished)Google Scholar
  80. 8.80
    Q. Li, C.S. Tsai: Wideband acousto-optic Bragg diffraction in a LiNb03 spherical waveguide and its applications (unpublished)Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1990

Authors and Affiliations

  • Chen S. Tsai

There are no affiliations available

Personalised recommendations