Wideband Acousto-Optic Bragg Diffraction in LiNbO3 Waveguide and Applications

  • Chen S. Tsai
Part of the Springer Series in Electronics and Photonics book series (SSEP, volume 23)


Chapter 2 has presented the basic principles and analytical techniques for bulk-wave Acousto-Optic (AO) interactions. In this chapter, a detailed treatment of wide-band AO Bragg diffraction in a planar LiNbO3 waveguide, the resulting devices, and some potential applications is given. The sequence of presentation for the content of the Chapter now follows. First, the basic configuration and mechanisms for planar guided-wave AO Bragg diffraction from a single Surface Acoustic Wave (SAW) in a LiNbO3 waveguide and the resulting diffraction efficiency and frequency response are analyzed in detail using the coupled-mode technique. As a comparison some calculated and measured performances with the other two potential materials, namely GaAs and nonpiezoelectrics such as thermally-oxidized Si or AS2S3, are also discussed. The key parameters of the resulting AO Bragg modulators and deflectors or cells and their inherent limitations are then identified and discussed. The coupled-mode technique is thereafter extended to analyze AO Bragg diffraction from multiple SAWs. The unified theory developed is applied to the two wide-band device configurations, namely, multiple tilted SAWs and phased SAWs. Subsequently, a number of SAW transducer configurations for realization of wide-band Bragg cells are described and compared. Design, fabrication, testing, and measured performance of wide-band AO Bragg cells in y-cut LiNbO3 substrates are also presented.


Surface Acoustic Wave Diffraction Efficiency Bragg Diffraction Photodetector Array High Diffraction Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 5.1
    C.S. Tsai: Guided-wave acousto-optic Bragg modulators for wideband integrated optic communications and signal processing. IEEE Trans. CAS-26, 1072 (1979)Google Scholar
  2. 5.2
    I.P. Kaminow, J.R. Carruthers: Optical waveguiding layers in LiNbO3 and LiTaO3. Appl. Phys. Lett. 22, 326–329 (1973)ADSCrossRefGoogle Scholar
  3. 5.3
    R.V. Schmidt, I.P. Kaminow: Metal-diffused optical wave guides in LiNbO3. Appl. Phys. Lett. 25, 458–460 (1974) R.D. Stanley, V. Ramaswamy: Nb-diffused LiTa03 optical waveguides: Planar embedded strip guides. Appl. Phys. Lett. 25, 711 (1974)ADSCrossRefGoogle Scholar
  4. 5.4
    L. Kuhn, M.D. Kakss, P.F. Heidrich, B.A. Scott: Deflection of and optical guided wave by a surface acoustic wave. Appl. Phys. Lett. 17, 265ff (1970)ADSCrossRefGoogle Scholar
  5. 5.5
    Y. Omachi: Acousto-optical light diffraction in thin films. J. Appl. Phys. 44, 3928–3932 (1973)ADSCrossRefGoogle Scholar
  6. 5.6
    D. Marcuse: TE modes of graded-index slab waveguides. IEEE J. QE-9, 1000–1006 (1973)CrossRefGoogle Scholar
  7. 5.7
    E.M. Conwell: Modes in optical waveguides formed by diffusion. Appl. Phys. Lett. 26, 328–329 (1973)ADSCrossRefGoogle Scholar
  8. 5.8
    P.K. Tien, S.Riva-Sanseverino, R.J. Martin, A.A. Ballman, H. Brown: Optical waveguide modes in single crystalline LiNbO3-LiTaO3 solid-solution films. Appl. Phys. Lett. 24, 503–506 (1974)ADSCrossRefGoogle Scholar
  9. 5.9
    H. Kogelnik: Theory of dielectric waveguides, in Integrated Optics, ed. T. Tamir, Topics Appl. Phys., Vol. 7 ( Springer, Berlin, Heidelberg 1975 ) Chap. 2CrossRefGoogle Scholar
  10. 5.10
    G.B. Hocker, W.K. Burns: Modes in diffused optical waveguides of arbitrary index profile. IEEE J. QE-11, 270–276 (1975)CrossRefGoogle Scholar
  11. 5.11
    R.V. Schmidt, I.P. Kaminow: Acousto-optic Bragg deflection in LiNbO3 Ti- diffused waveguides. IEEE J. QE-11, 57–59 (1975)CrossRefGoogle Scholar
  12. 5.12
    C.S. Tsai, Le T. Nguyen, S.K. Yao, M.A. Alhaider: High-performance guided light beam device using two tilted-surface acoustic waves. Appl. Phys. Lett. 26, 140–142 (1975) C. S. Tsai: Wideband guided-wave acousto-optic Bragg devices and applications, in Proc. of the 1975 Ultrasonic Symposium, IEEE Cat. 75CHO-994-4SU, pp. 120–125ADSCrossRefGoogle Scholar
  13. 5.13
    R.V. Schmidt Acousto-optic interactions between guided optical waves and acoustic surface waves. IEEE Trans. SU-23, 22–23 (1976)Google Scholar
  14. 5.14
    C.S. Tsai, M.A. Alhaider, Le T. Nguyen, B. Kim: Wideband guided-wave acousto-optic Bragg diffraction and devices using multiple tilted-surface acoustic waves. Proc. IEEE 64, 318–328 (1976)ADSCrossRefGoogle Scholar
  15. 5.15
    B. Kim, C.S. Tsai: High-performance guided-wave acousto-optic scanning devices using multiple-surface acoustic waves. Proc. IEEE 64, 788–796 (1976)CrossRefGoogle Scholar
  16. 5.16
    E.G. Lean, J.M. White, C.D.W. Wilkinson: Thin-film acousto-optic devices. Proc. IEEE 64, 779–788 (1976)CrossRefGoogle Scholar
  17. 5.17
    T.G. Giallorenzi: Acousto-optical deflectin in thin-film waveguides. J. Appl. Phys. 44, 242–253 (1973)ADSCrossRefGoogle Scholar
  18. 5.18
    T.G. Giallorenzi, A.F. Milton: Light deflection in multimode waveguides using the acousto-optic interaction. J. Appl. Phys. 45, 1762–1774 (1974)ADSCrossRefGoogle Scholar
  19. 5.19
    R. Normandin, V.C.-Y. So, N. Rowell, G.I. Stegeman: The scattering of guided optical beams by surface acoustic waves in thin films. J. Opt. Soc. Am. 69, 1153–1165 (1979)ADSCrossRefGoogle Scholar
  20. 5.20
    C.S. Tsai, I.W. Yao, B. Kim, Le T. Nguyen: Wideband guided-wave anisotropic acousto-optic Bragg diffraction in LiNbO3 waveguides, at Int’l. Conf. on Inte¬grated Optics and Optical Fiber Commun. Tokyo, Japan (July 1977) in Digest Techn. Papers, pp.57–60Google Scholar
  21. 5.21
    See, for example, V.V. Proklov: Acousto-optic interactions in planar waveguide, Pt.I. Proc. Int’l Symp. on Surface Waves in Solids and Layered Structures, Novosibirsk (1986), Vol.1, pp. 148–163 D. V. Petrov: Acousto-optic interactions in a planar optical waveguide, Pt.II (Ibid.) pp. 164–175Google Scholar
  22. 5.22
    P.K. Tien, Bell Telephone Lab. Report, MM-61-124-8 (1961)Google Scholar
  23. 5.23
    C.F. Quate, C.D.W. Wilkinson, D.K. Winslow: Interaction of light and microwave sound. Proc. IEEE 53, 1604–1623 (1965)CrossRefGoogle Scholar
  24. 5.24
    H.V. Hance, J.K. Parks: Wideband modulation of a laser beam using Bragg- angle diffraction by amplitude-modulated ultrasonic waves. J. Acoust. Soc. Am. 38, 14–23 (1965)ADSCrossRefGoogle Scholar
  25. 5.25
    A.J. DeMaria, G.E. Danielson Jr.: Internal laser modulation by acoustic lenslike effects. IEEE J. QE-2, 157–164 (1966)CrossRefGoogle Scholar
  26. 5.26
    A. Korpel, R. Adler, P. Desmares, W. Watson: A television display using acous¬tic deflection and modulation of coherent light. Proc. IEEE 54, 1429–1437 (1966)CrossRefGoogle Scholar
  27. 5.27
    M.G. Cohen, I.E. Gordon: Acoustic beam probing using optical techniques. Bell Systems Techn. J. 44, 693–721 (1965) E. I. Gordon: A review of acousto-optic deflection and modulation. Proc. IEEE 54, 1391–1401 (1966)Google Scholar
  28. 5.28
    R. Adler. Interactions of light and sound. IEEE Spectrum 4, 42–54 (May 1967)CrossRefGoogle Scholar
  29. 5.29
    R.W. Dixon: Acoustic diffraction of light in anisotropic media. IEEE J. QE-3, 85 (1967)CrossRefGoogle Scholar
  30. 5.30
    R.W. Dixon: Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanner. J. Appl. Phys. 38, 5149–5153 (1967) D.A. Pinnow: Guidelines for the selection of acousto-optic materials. IEEE J. QE-6, 223–238 (1970)ADSCrossRefGoogle Scholar
  31. 5.31
    N. Uchida, N. Niizeki: Acousto-optic deflection materials and techniques. Proc. IEEE 61, 1073–1092 (1973) I.C. Chang: Acousto-optic deviceds and applications. IEEE Trans. SU-23, 2–22 (1976)CrossRefGoogle Scholar
  32. 5.32
    See, for example, W.S.C. Chang: Acoustooptical deflections in thin films. IEEE J. QE-7, 167–170 (1971), V.V. Proklov, E.M. Korablev: Acousto-optic mea¬surements of effective reflective indices of guided modes in planar waveguides. Electron. Lett. 19, 238 (1983) D.V. Petrov: Acoustooptic and electrooptic guided wave conversion to leaky waves in an anisotropic optical waveguide. Opt. Commun. 50, 300 (1984) D. V. Petrov, J. Ctyroky: Kvatovaya Elecktronika (USSR) 12, 987 (1985) E. A. Kolosovsky, D.V. Petrov, I.B. Yakovkin: Spatial spectrum of leaky waves generated by scattering of a guided wave from an acoustic wave. Opt. Commun. 60, 280–286 (1986)CrossRefGoogle Scholar
  33. 5.33
    G.W. Farnell: Properties of elastic surface waves, in Physical Acoustics 6, 109–166 ( Academic, New York 1970 )Google Scholar
  34. 5.34
    R.N. Spaight, G.G. Koerben Piezoelectric surface waves on LiNbOs. IEEE Trans. SU-18, 237–238 (1971)Google Scholar
  35. 5.35
    A.J. Slobodnik, E.D. Conway, R.T. Delmonico (eds.), Microwave Acoustics Handbook, Vol.1 A: Surface Wave Velocities, AFCRL-TR-73-0593 (1 Oct. 1973 )Google Scholar
  36. 5.36
    B.A. Auld: Acoustic Fields and Waves in Solids, Vol. 11, ( Wiley, New York 1973 )Google Scholar
  37. 5.37
    R.J. Pressley (ed.): Handbook of Lasers with Selected Data of Optical Technology (Chemical Rubber, Cleveland, Ohio 1971 )Google Scholar
  38. 5.38
    K.W. Loh, W.S.C. Chang, W.R. Smith, T. Gudkowski: Bragg coupling efficiency for guided acoustic interaction in GaAs. Appl. Opt. 15, 156–166 (1976)ADSCrossRefGoogle Scholar
  39. 5.39
    O. Yamazaki, C.S. Tsai, M. Umeda, L.S. Yap, C.J. Lii, K. Wasa, J. Merz: Guided-wave acousto-optic interactions in GaAs-ZnO composite structure, in 1982 IEEE Ultrasonics Symposium Proc., IEEE Cat. No. 82CH1823-4, pp.418–421 A.A. Ilyich, S.M. Kikkarin, D.V. Tsarev, I.B. Yakovkin: A comparison of acoustooptic interaction in LiNb03 and GaAlAs waveguides. Opt. Commun. 56, 161–166 (1985)Google Scholar
  40. 5.40
    C.J. Lii, C.S. Tsai, C.C. Lee: Wide-band guided-wave acousto-optic Bragg cells in GaAs-GaAlAs waveguide. IEEE J. QE-22, 868–872 (1986) A. Abdelrazek, C.S. Tsai: High-performance acoustooptic Bragg cells in ZnO- GaAs waveguide at GHz frequencies. Optoelectronics — Devices and Technologies 4, 33–37 (1989)CrossRefGoogle Scholar
  41. 5.41
    J. Kushibiki, H. Sasaki, N. Chubachi, N. Mikoshiba, K. Shibayama, Thickness dependence of acousto-optica diffraction efficiency in ZnO-film optical waveguides. Appl. Phys. Lett. 26, 362–364 (1975)ADSCrossRefGoogle Scholar
  42. 5.42
    N. Chubachi: ZnO films for surface acousto-optic devices on nonpiezoelectric substrates. Proc. IEEE 64, 772–774 (1976)CrossRefGoogle Scholar
  43. 5.43
    J. Kushibiki, N. Chubachi, K. Shibayama: Improvement of diffraction efficiency in surface-acoustic-optic devices by means of multi-layered surface. Appl. Phys. Lett. 29, 333–335 (1976)ADSCrossRefGoogle Scholar
  44. 5.44
    N. Chubachi, H. Sasaki: Surface acousto-optic interaction in ZnO thin films. Wave Electronics 2, 379 (1976)Google Scholar
  45. 5.45
    D. Mergerian, E. Malarkey, B. Newman, J. Lane, R. Weinert, B.R. McAvoy, C.S. Tsai: Zinc oxide transducer arrays for integrated optics, in Proc. 1978 Ultrasonics Symp., IEEE Cat. No. 78-CH1344-1SU, pp.64–69Google Scholar
  46. 5.46
    S.K. Yao, R.R. August, D.B. Anderson: Guided-wave acousto-optic interaction on nonpiezoelectric substrates. J. Appl. Phys. 49, 5728–5730 (1978)ADSCrossRefGoogle Scholar
  47. 5.47
    K. Setsune, T. Mitsuyu, O. Yamazaki, K. Wasa: Discrete frequency Bragg deflector at 2 GHz range using ZnO/sapphire substrate. Proc. 1983 IEEE Ultrasonics Symp.Google Scholar
  48. 5.48
    R.W. Smith, H.M. Gerard, J.H. Collins, T.M. Reeder, H.J. Shaw: Design of surface wave delay lines with interdigital transducers. IEEE Trans. MTT-17, 865–873 (1969)Google Scholar
  49. 5.49
    T.M. Bristol: Analysis and design of surface acoustic wave transducers, in Proc. Cotif. on Component Performance and System Application of Surface Wave devices, (IEEE, Stevenage, England 1973 ) pp. 115–129Google Scholar
  50. 5.50
    R.H. Tancrell, M.G. Holland: Acoustic surface wave filters. Proc. IEEE 59, 393–409 (1971) C.S. Hartmann, D.T. Bell, R.C. Rosenfeld: IEEE Trans. SU-20, 80 (1973)CrossRefGoogle Scholar
  51. 5.51
    W.R. Smith, H.M. Gerard, W.R. Jones: Analysis and design of dispersive interdigital surface-wave transducers. IEEE Trans. MTT-20, 458–471 (1972)Google Scholar
  52. 5.52
    H. Matthews (ed.): Surface Wave Filters — Design, Construction, and Use ( Wiley, New York 1977 )Google Scholar
  53. 5.53
    D. Maydan: Acousto-optical pulse modulators. IEEE J. QE-6, 15–24 (1970)CrossRefGoogle Scholar
  54. 5.54
    G.L. Matthaei, L. Young, E.M.T. Jones: Microwave Filters, Impedance Matching Networks and Coupling Structures ( McGraw-Hill, New York 1964 )Google Scholar
  55. 5.55
    G.L. Matthaei, D.Y. Young: Some techniques for interdigital acoustic surface wave filter synthesis, in Proc. 1973 Ultrasonics Symposium, IEEE Cat. No. 73CH0807-8SU, pp.427–435 O.L. Matthaei, D.J. Wong, P.B. O’Shaughnessy: IEEE Trans. SU-22, 105 (1975)Google Scholar
  56. 5.56
    T.M. Reeder, W.R. Shreve, P.L. Adams: A new broadband coupling network for interdigital surface wave transducers. IEEE Trans. SU-19, 466 (1972)Google Scholar
  57. 5.57
    D.L. Hechf Broadband acousto-optic spectrum analysis, in Proc. 1973 IEEE Ultrasonics Symposium, IEEE Cat. No. 73CH0807-8SU, pp. 98–101Google Scholar
  58. 5.58
    C.S. Tsai, Le T. Nguyen, B. Kim, I.W. Yao: Guided-wave acousto-optic signal processors for wideband radar systems, in Effective Utilization of Optics in Radar Systems, SPIE 128, 68–74 (1978)Google Scholar
  59. 5.59
    E.G. Lean, C.C. Tseng: Nonlinear effects in surface acoustic waves. J. Appl. Phys. 41, 3912–3917 (1970)ADSCrossRefGoogle Scholar
  60. 5.60
    B. Kim, C.C. Lee, C.S. Tsai: Design and fabrication of GHz bandwidth guided- wave acousto-optic Bragg deflectors in LiNb03 waveguides (unpublished)Google Scholar
  61. 5.61
    C.S. Tsai, L.T. Nguyen, B. Kim: Wideband guided-wave acousto-optic Bragg diffraction using phased-surface acoustic wave array in LiNbO3 waveguides, in Proc. 1975 IEEE Ultrasonics Symposium, IEEE Cat. No. 75CH0-994-4SU, pp.42–43Google Scholar
  62. 5.62
    C.S. Tsai: Wideband guided-wave acousto-optic Bragg devices and applications, in Proc. 1975 IEEE Ultrasonics Symposium, IEEE Cat. No. 75CH0-994-4SU, pp. 120–125Google Scholar
  63. 5.63
    C.D.W. Wilkinson, R.M. de la Rue, G. Tranton Light beam deflector using SAW optical interaction, presented at the 1975 Int’l. Electron Devices Meeting, Washington, DCGoogle Scholar
  64. 5.64
    Le T. Nguyen, C.S. Tsai: Efficient wideband guided-wave acousto-optic Bragg diffraction using phased-surface acoustic wave array in LiNb03 waveguides. Appl. Opt. 16, 1297–1304 (1977)ADSCrossRefGoogle Scholar
  65. 5.65
    G.A. Coquin, J.P. Griffin, L.K. Anderson: Wideband acousto-optic deflectors using acoustic beam steering. IEEE Trans. SU-17, 34–40 (1970)ADSGoogle Scholar
  66. 5.66
    D.A. Pinnow: Acousto-optic light deflection: design consideration for first- order beam steering transducers. IEEE Trans. SU-18, 209–214 (1971)Google Scholar
  67. 5.67
    C.C. Lee, K.Y. Liao, C.L. Chang, C.S. Tsai: Wideband guided-wave acousto- optic Bragg deflector using a tilted-finger chirp transducer. IEEE J. QE-15, 1166–1170 (1979)Google Scholar
  68. 5.68
    H.I. Smith, F.J. Bachner, N. Efremow: A high-yield photolithographic technique for surface wave devices. J. Electrochem. Soc. 118, 822–825 (1971)Google Scholar
  69. 5.69
    R.L. Davis, F.S. Hickernell, R.L. Ward, F.V. Richard, S.H. Arneson: Design, fabrication, and performance of wideband guided-wave Bragg cells at frequencies above 1 GHz. 1982 Topical Meeting on Integrated and Guided-Wave Optics, Pacific Grove, CA, in Technical Digest of Post Deadline Papers, pp.PDPl1-1 to 4Google Scholar
  70. 5.70
    T. Suhara, H. Nishihara, J. Koyama: One-gigahertz-bandwidth demonstration in integrated optic spectrum analyzers, paper 29C5-5 presented at Int’l Conf. on Integrated Optics and Optical Fiber Communications, Tokyo, Japan, 27–30 June 1983Google Scholar
  71. 5.71
    C. Stewart, G. Serivener, W.J. Stewart: Guided-wave acoustooptic spectrum analysis at frequencies above 1 GHz. 3rd Int’l Conf. on Integrated Optics and Optical Fiber Communication (1981), Techn. Digest p.122Google Scholar
  72. 5.72
    M.K. Barnoski, B. Chen, H.M. Gerald, E. Marom, O.G. Ramer, W.R. Smith, G. L. Tangonan, R.D. Weglein: Design, fabrication, and integration of components for an integrated optic spectrum analyzer, in: 1978 Ultrasonics Symposium Proc., IEEE Cat. No. 78CH1344-1SU, pp.74–78Google Scholar
  73. 5.73
    K.Y. Liao, C.L. Chang, C.C. Lee, C.S. Tsai: Progress on wideband guided-wave acousto-optic Bragg deflector using a tilted-finger chirp transducer. In 1979 Ultrasonics Symposium Proc., IEEE Cat. No. 79CH1482-9SU, pp.24–27Google Scholar
  74. 5.74
    T.R. Joseph: Broadband chirp transducers for integrated optics spectrum analyzers. 1979 Ultrasonics Symposium Proc., IEEE Cat. No. 79CH1482-9SU, pp.28–32Google Scholar
  75. 5.75
    P.K. Tien, R. Ulrich, R.J. Martin: Modes of propagating light waves in thin deposited semiconductor films. Appl. Phys. Lett. 14, 291–294 (1969) J.H. Harris, R. Shubert Beam coupling to films. URSI Spring Meeting, Washington, DC (1969), Conf. Abstracts, p.71 J.E. Midwinter, F. Zernike: Experimental studies of evanescent wave coupling into a thin-film waveguide. Appl. Phys. Lett. 16, 198–200 (1970)ADSCrossRefGoogle Scholar
  76. 5.76
    D.Y. Zang, C.S. Tsai: Single-mode waveguide microlenses and microlens arrays fabrication using titanium-indiffused proton exchange technique in LiNbO3. Appl. Phys. Lett. 48, 703–705 (1985)ADSCrossRefGoogle Scholar
  77. 5.77
    V.M. Ristic, S.A. Jones, G.R. Dubois: Evaluation of an integrated acousto-optic receiver. Cdn. Electr. Eng. J. 8, 59–64 (1983)Google Scholar
  78. 5.78
    T. Suhara, T. Shiono, H. Nishihara, J. Koyama: An integrated optic Fourier processor using an acousto-optic deflector and Fresnel lenses in As2S3 waveguide. J. Lightwave Technol. LT-1, 624–630 (1983)ADSCrossRefGoogle Scholar
  79. 5.79
    D. Gregoris and V.M. Ristic: Wideband transducer for acousto-optic Bragg de- Hector. Cdn. J. Phys. 63, 195–197 (1985)ADSGoogle Scholar
  80. 5.80
    See, for example, I. Hayashi: Recent progress in semiconductor lasers — cw GaAs lasers are now ready for new applications. Appl. Phys. 5, 25 (1974) A. Yariv, P. Yeh: Optical Waveguides in Crystals (Wiley, New York 1984) Chap. 11 Y. Suematsu: Advances in semiconductor lasers. Phys. Today 32, 32–39 (May 1985)ADSCrossRefGoogle Scholar
  81. 5.81
    I. Hayashi, M.B. Panish, P.W. Foy, S. Sumski: Junction lasers which operate continuously at room temperature. Appl. Phys. Lett. 17, 109 (1970) M. Nakamura, A. Yariv, H.W. Yen, S. Somekh, H.L. Garvin: Optically pumped GaAs surface laser with corrugation feedback. Appl. Phys. Lett. 22, 515 (1973) H. Yonezu, I. Sakuma, K. Kobayashi, T. Kamejima, M. Ueno, Y. Nannichi, A GaAs-AlxGalocAs double heterostructure plane stripe laser. Japan J. Appl. Phys. 12, 1485–1492 (1973) D. R. Scifres, R.D. Burnham, W. Streifer: Highly collimated laser beams from electrically pumped SH GaAs/GaAlAs distributed-feedback lasers. Appl. Phys. Lett. 26, 48 (1975) Y. Suematsu, M. Yamada, K. Hayashi: Integrated twin-guide AlGaAs laser with multiheterostructure. IEEE J. QE-11, 457–460 (1975) C.C. Tseng, D. Botez, S. Wang: Optically pumped epitaxial GaAs waveguide lasers with distributed Bragg reflectors. IEEE J. QE-12, 549 (1976) H.W. Yen, W. Ng, I. Samid, A. Yariv: GaAs distributed Bragg reflector lasers. Opt. Cummun. 17, 213 (1976) F. K. Reinhart, A.Y. Cho: AlyGa1As/AlxGa1-xAs laser structures for inte¬grated optics grown by molecular-beam epitaxy. Appl. Phys. Lett. 31, 457 (1977) J.L. Merz, R.A. Logan: Integrated GaAs-AlxGa1-xAs injection lasers and detectors with etched reflectors. Appl. Phys. Lett. 30, 530 (1977) C.C. Ghizoni, J.M. Ballantyne, C.L. Tang: Theory of optical-waveguide distributed feedback lasers: A Green’s function approach. IEEE J. QE-13, 843 (1977) W.T. Tsang, R.A. Logan: GaAs-AlxGa1-xAs strip buried heterostructure lasers. IEEE J. QE-15, 451 (1979) L.A. Coldren, K. Iga, B.I. Miller, J.A. Rentschlen GalnAsP/InP strip-geometry laser with a reactive-ion-etched facet. Appl. Phys. Lett. 37, 681 (1980) M. Nakamura: Single-mode operation of semiconductor injection lasers. IEEE Trans, on Circuits and Systems CAS-26, 1055–1065 (1979)ADSCrossRefGoogle Scholar
  82. 5.82
    See the references for waveguide lenses, listed in Chap.8Google Scholar
  83. 5.83
    D.B. Ostrowsky, R. Poirier, L.M. Reibor, C. Deverdun: Integrated optical pho- todetector. Appl. Phys. Lett. 22, 263–464 (1973) H. Stoll, A. Yariv, R.G. Hunsperger, G.L. Tangonan: Proton-implanted optical waveguide detectors in GaAs. Appl. Phys. Lett. 23, 664–665 (1973) G. E. Stillman, C.M. Wolfe, I. Melgailis: Monolithic integrated InxGa1-xAs Schottky-barrier waveguide photodetector. Appl. Phys. Lett. 25, 36–39 (1974) C.C. Tseng, S. Wang: Integrated grating-type Schottky-barrier photodetector with optical channel waveguide. Appl. Phys. Lett. 26, 632–636 (1975) J.T. Boyd, C.L. Chen: Integrated optical silicon photodiode array. Appl. Opt. 15, 1389 (1976) J.L. Merz, R.A. Logan, A.M. Sergent: GaAs integrated optical circuits by wet chemical etching. IEEE J. QE-5, 72–82 (1979) J.C. Campbell, T.P. Lee, A.G. Dentai, C.A. Burrus: Dual-wavelength demulti¬plexing InGaAsP photodiode. Appl. Phys. Lett. 34, 401-402 (1979) G.M. Borsuk, A. Turley, G.E. Marx, E.C. Malarkey: Photosensor array for integrated optical spectrum analyzer systems. Proc. SPIE 176, 109 (1979) G.W. Anderson, A.E. Spezio: Photodetector approaches for acousto-optics spectrum analysis. Proc. SPIE 477, 161–164 (1984) I. Melngailis: Laser sources and detectors for guided-wave optic signal processing. Proc. SPIE 185 (1979) F.F. So, S.R. Forrest, H.L. Garvin, D.L. Jackson: A fast organic-on-inorganic semiconductor photodetector. 1988 OSA Topical Meeting on Integrated and Guided-Wave Optics, Santa Fe, NM, Techn. Digest Ser., Vol.5, pp.210–214CrossRefGoogle Scholar
  84. 5.84
    See, for example, W.T. Tsang, A.Y. Cho: Molecular beam epitaxial writing of patterned GaAs epilayer structures. Appl. Phys. Lett. 32, 491 (1978) E. Garmire: Semiconductor components for monolithic applications, in Integrated Optics, 2nd edn., ed. by T. Tamir (Springer, Berlin, Heidelberg 1979 )ADSCrossRefGoogle Scholar
  85. 5.85
    H.F. Taylor, W.E. Martin, W.M. Caton: Channel waveguide electro-optic devices for communications and information processing. 1976 Topical Meeting on Integrated Optics, Salt Lake City, Utah, in Digest of Technical Papers, Cat. No. 75CH1039-7QEC, pp.WA5-l to 5 R. Shubert, J.H. Harris: Optical survace waves on thin films and their applica¬tion to integrated data processors. IEEE Trans. MIT-16, 1048-1054 (1968) H.F. Taylor: Application of guided-wave optics in signal processing and sensing. Proc. IEEE 75, 1524–1535 (1987) C.S. Tsai, D.Y. Zang, P. Le: Guided-wave acousto-optic Bragg diffraction in a LiNb03 channel-planar waveguide with application to optical computing. Appl. Phys. Lett. 47, 549–551 (1985) C.M. Verber and R.P. Kenan: Integrated optical circuits for numerical computation. Proc. SPIE 408, 57 (1983) C.M. Verber: Integrated-optical approaches to numerical optical processing. Proc. IEEE 72, 942–953 (1984) C.S. Tsai: Titatium-indiffused proton-exchanged microlens-based integrated optic Bragg modulator modules for optical computing. Proc. SPIE 634, 409–421 (1986) C.S. Tsai: Integraged-optical device modules in LiNb03 for computing and signal processing. J. Mod. Opt. 35, 965–977 (1988)Google Scholar
  86. 5.86
    T. Van Duzer: Lenses and graded films for focusing and guiding acoustic surface waves. Proc. IEEE 58, 1230–1237 (1970)CrossRefGoogle Scholar
  87. 5.87
    E.A.J. Marcatili: Dielectric rectangular waveguide and directional coupler for integrated optics. Bell Syst. Techn. J. 48, 2071 (1969) H. Kogelnik, R.V. Schmidt: Switched directional couplers with alternating Δβ. IEEE J. QE-12, 396 (1976) R.C. Alferness: Guided-wave devices for optical communication. IEEE J. QE-17, 946 (1981) F. Auracher, H.H. Witte: New Directional coupler for integrated optics. J. Appl. Phys. 45, 4997 (1974) K. Tada, K. Hirose: A new light modulator using perturbation of synchronism between two coupled guides. Appl. Phys. Lett. 25, 261 (1974) W.J. Tomlinson, H.P. Weber, C.A. Pryde, E.A. Chandross: Optical directional couplers and grating couplers using a new high-resolution photolocking material. Appl. Phys. Lett. 26, 303 (1975) J.C. Campbell, F.A. Blum, D.W. Shaw: GaAs electro-optic channel-waveguide modulator. Appl. Phys. Lett. 26, 640 (1975) F.J. Leonberger, J.P. Donnelly, C.O. Bozlen GaAsP+n-n+ directional-coupler switch. Appl. Phys. Lett. 29, 640 (1975) J.C. Shelton, F.K. Reinhart, R.A. Logan: GaAs-AnxGa1-xAs rib waveguide switches with MOS electrooptical control. Appl. Opt. 17, 2548 (1978) A. Carenco, L. Menigaus, P. Delpech: Multiwave length GaAs rib waveguide directional coupler with stepped A/9 Schottky electrodes. J. Appl. Phys. 50, 5139 (1979) H.A. Haus, C.G. Fonstad: Three-waveguide couplers for improved sampling and filtering. IEEE J. QE-17, 2321 (1981)Google Scholar
  88. 5.88
    M. Papuchon, Am. Ray, D.B. Ostrowsky: Electrically active bifurcations: BOS. Appl. Phys. Lett. 31, 266 (1977) Y. Ohmachi, J. Noda: Electro-optic light modulator with branched ridge waveguide. Appl. Phys. Lett. 27, 544 (1975) C.S. Tsai, B. Kim, F.R. El-Akkari: Optical channel waveguide switch and coupler using total internal reflection. IEEE J. QE-14, 513 (1978) F.R. El-Akkari, C.L. Chang, C.S. Tsai: Electro-optical channel waveguide matrix switch using total internal reflection. 1980 Topical Meeting on Guided- Wave and Integrated Optics, Incline Village, Nevada, in Technical Digest, OSA/IEEE Cat. No. 80CH1489-4QEA, pp.TuEf-1 to 4 C.L. Chang, F.R. El-Akkari, C.S. Tsai: Fabrication and testing of optical chan-nel waveguide TIR switching networks. Proc. SPIE 239, 147 (1981) C.L. Chang, C.S. Tsai: GHz bandwidth optical channel waveguide TIR switches and 4x4 switching networks. 1982 Topical Meeting on Integrated and Guided- Wave Optics, Pacific Grove, CA, in Technical Digest, IEEE Cat. No. 82CH1719-4, pp.TuD2-l to 4 C.S. Tsai, C.C. Lee, Phat Le: A 8.5 GHz bandwidth single-mode crossed chan¬nel waveguide TIR modulator and switch in LiNb03. 1984 Topical Meeting on Integrated and Guided-Wave Optics, in Technical Digest of Post Deadline Papers, IEEE Cat. No. 84CH1997-6, pp.PD5-l to 4 K. Wasa, H. Adachi, T. Kawaguchi, K. Ohji, K. Setsune: Optical TIR switches using PLZT thin film waveguides on sapphire. Int’l. Conf. on Integrated Optics and Optical Fiber Communications, Tokyo, Japan (1983), in Technical Digest, pp.356–357 A. Neyer: Electro-optic x-switch using single-mode Ti:LiNbOs channel wave-guides. Electron. Lett. 19, 553 (1983)ADSCrossRefGoogle Scholar
  89. 5.89
    P.K. Tien, S. Riva-Sanseverino, A.A. Ballman: Light beam scanning and def-lection in epitaxial LiNb03 electro-optic waveguides. Appl. Phys. Lett. 25, 563–565 (1974)ADSCrossRefGoogle Scholar
  90. 5.90
    I.P. Kaminow, L.W. Stulz: A planar electro-optic prism switch. IEEE J. QE-11, 633–635 (1975)CrossRefGoogle Scholar
  91. 5.91
    C.S. Tsai, P. Saunien Ultrafast guided-light beam deflection/switching and modulation using simulated electro-optic prism structures in LiNb03 wave-guides. Appl. Phys. Lett. 27, 248–250 (1975) C.S. Tsai, P. Saunien New guided-wave acousto-optic and electcro-optic devices using LiNbO3, Ferroelectrics 10, 257–261 (1976)ADSCrossRefGoogle Scholar
  92. 5.92
    H. Kotani, S. Namba, M. Kawabe: Electro-optic Bragg deflection modulators in corrugated waveguides. IEEE J. QE-15, 270–272 (1979)CrossRefGoogle Scholar
  93. 5.93
    N. Sasaki, R.M. de la Rue: Electro-optic Bragg deflection modulators in corru-gated waveguides. IEEE J. QE-15, 270–272 (1979) P. Saunier, C.S. Tsai, I.W. Tao, Le T. Nguyen: Electro-optic phased-array light beam deflector with application to analog-to-digital conversion, at Topical Meeting on Integrated and Guided-Wave Optics, Salt Lake City, Utah, in Tech- nial Digest, Paper TuC2, pp.TuC2-4 (1978)Google Scholar
  94. 5.94
    D.C. Flanders, H. Kogelnik, R.V. Schmidt, C.V. Shank: Grating filters for think-film optical waveguides. Appl. Phys. Lett. 24, 194–196 (1974) A.C. Livanors, A. Katzir, A. Yariv, C.S. Hong: Chirped-grating demultiplexers in dielectric waveguides. Appl. Phys. Lett. 30, 519-521 (1977) P.S. Cross, H. Kogelnik: Suppression in corrugated-waveguide filters. Opt. Lett. 1, 43–45 (1977) H.W. Yen, H.R. Friedrich, R.J. Morrison, G.L. Tangonan: Planar Rowland spectrometer for fiber-optic wavelength demultiplexing. Opt. Lett. 6, 639–641 (1981) T. Suhara, Y. Handa, H. Nishihara, J. Koyama: Monolithic integrated micro- gratings and photodiodes for wavelength demultiplexing. Appl. Phys. Lett. 40, 120–122 (1982) E. Voges: Multimode planar devices for wavelength division multiplexing and demultiplexing, presented at 1983 Int’l. Conf. on Integrated Optics and Optical Fiber Communications, Tokyo, Japan, 27-30 June, Paper No. 29A1-5 G. Winzen Wavelength multiplexing components—a review of singe-mode de¬vices and their applications. J. Lightwave Techn. LT-2, 369–378 (1984)ADSCrossRefGoogle Scholar
  95. 5.95
    R.C. Alferness, R.V. Schmidt: Tunable optical waveguide directional coupler filter. 1978 Topical Meeting on Integrated and Guided-Wave Optics, in Techni-cal Digest, Paper TuA3 R.C. Alferness, P.S. Cross: Filter characteristics of co-directionally coupled waveguides with weighted coupling. IEEE J. QE-14, 843 (1978) R.C. Alferness: Efficient electro-optic TE-TM mode converter/wavelength filter. Appl. Phys. Lett. 36, 513–515 (1980)Google Scholar
  96. 5.96
    L. Kuhn, P.F. Heidrich, E.G. Lean: Optical guided wave mode conversion by an acoustic sufrace wave. Appl. Phys. Lett. 19, 428–430 (1971)ADSCrossRefGoogle Scholar
  97. 5.97
    M.S. Chang: Tolerances to the phase matching condition for the integrated acousto-optic filter. Appl. Opt. 13, 1867 (1974)ADSCrossRefGoogle Scholar
  98. 5.98
    Y. Ohmachi, J. Noda: LiNbO0 TE-TM mode converter collinear acousto-optic interaction. IEEE J. QE-13, 43–46 (1977) K. Yamonouchi, K. Higuchi, K. Shibayama: TE-TM mode conversion by interaction between elastic surface waves and a laser beam on a metal-diffused optical waveguide. Appl. Phys. Lett. 29, 75–77 (1976) V. P. Hinkov, R. Opitz, W. Sohler: Collinear acousto-optical TM-TE mode conversion in proton exchanged Ti-LiNbOa waveguide structures. J. Lightwave Tech. 6, 903–908 (1988)CrossRefGoogle Scholar
  99. 5.99
    B. Kim, C.S. Tsai: Thin-film tunable optical filtering using anisotropic interaction. IEEE J. QE-15, 642–647 (1979)Google Scholar
  100. 5.100
    H. Jerominek, J.Y.D. Pomerleau, P. Tremblay, C. Delisle: An integrated acousto-optic bistable device. Opt. Commun. 51, 6–10 (1984)ADSCrossRefGoogle Scholar
  101. 5.101
    C.S. Tsai, Le T. Nguyen, C.C. Lee: Optical pulse compression and very highspeed light beam scanning using guided-wave acousto-optic Bragg diffraction. 1978 Topical Meeting on Integrated and Guided Wave Optics, Salt Lake City, Utah, in Technical Digest, pp.TuC3-l to 4, OSA 78Chl280-7 QEA.Google Scholar
  102. 5.102
    C.C. Lee, C.S. Tsai: An acousto-optic readout scheme for integrated optic RF spectrum analyzer. 1978 Ultrasonics Symposium Proc., IEEE Cat. No.78CH 1344-1SU, pp.79–81Google Scholar
  103. 5.103
    M. Ross, P. Freedman, J. Abernathy, G. Matassov, J. Wolf, J.D. Barry: Space optical communications with the Nd:YAG laser. Proc. IEEE 66, 319–344 (1978)ADSCrossRefGoogle Scholar
  104. 5.104
    L.C. Foster, C.B. Crumley, R.L. Cohoon: A high-resolution linear optical scanner using a traveling-wave acoustic lens. Appl. Opt. 9, 2154 (1970)ADSCrossRefGoogle Scholar
  105. 5.105
    P.T. Ho, L.A. Glaser, E.P. Ippen, H.A. Haus: Picosecond pulse generation with a cw GaAlAs laser diode. Appl. Phys. Lett. 33, 241 (1978) Z.A. Yasa, A. Dienes, J.R. Whinnery: Subpicosecond pulses from a cw double mode locked dye laser. Appl. Phys. Lett. 30, 24–26 (1977)ADSCrossRefGoogle Scholar
  106. 5.106
    C.S. Tsai: The increase of Bragg diffraction intensity due to acoustic resonance and its application for demultiplexing and multiplexing in laser communication. Appl. Opt. 10, 215–218 (1971) S.K. Yao, C.S. Tsai: Acousto-optic Bragg diffraction with application to ultra¬high data rate laser communications systems. Pt.I Theoretical considerations of the standing wave ultrasonic Bragg cell. Appl. Opt. 16, 3032–3043 (1977) C.S. Tsai, S.K. Yao: Pt.II Experimental results of the SUBC and the acousto-optic multiplexer/demultiplexer terminals. Appl. Opt. 16, 3044–3060 (1977)ADSCrossRefGoogle Scholar
  107. 5.107
    C.S. Tsai, S.K. Yao, M.A. Alhaider, P. Saunier. High-speed guided-wave acousto-optic and electro-optic switches. 1974 Int’l. Electronic Devices Meeting, in Technical Digest, pp. 85–87Google Scholar
  108. 5.108
    S.E. Harris, R.W. Wallace: Acousto-optic tunable filter. J. Opt. Soc. Am. 59, 744–747 (1969 I.C. Chang: Noncollinear acousto-optic filter with large angular aperture. Appl. Phys. Lett. 25, 370 (1974) M. Khoshnevisam, E. Sovero, P.R. Newman, J. Tracy: Development of a cryogenic infrared acoustooptic tunable spectral filter. Proc. SPIE 245, 63 (1980) J.D. Feichtner, M. Gottlieb, J.J. Conroy: A tunable collinear acousto-optic filter for the intermediate infrared using crystal Ti3AsSe3. CLEO’75, Washington, DC T. Yano, A. Watanabe: Acousto-optic Te02 tunable filter using far-off-axis anisotropic Bragg diffraction. Appl. Opt. 15, 2250–2258 (1976)ADSCrossRefGoogle Scholar
  109. 5.109
    J.L. Davis, S. Ezekiel: Closed-loop, low-noise fiber-optic rotation sensor. Opt. Lett. 6, 505 (1981)ADSCrossRefGoogle Scholar
  110. 5.110
    R.F. Cahill, E. Udd: Phase-nulling fiber-optic laser gyro. Opt. Lett. 4, 93 (1979)ADSCrossRefGoogle Scholar
  111. 5.111
    F. Heismann, R. Ulrich: Integrated-optical single-sideband modulator and phase shifter. IEEE J. QE-18, 767 (1982)CrossRefGoogle Scholar
  112. 5.112
    B. Culshaw, M.G.F. Wilson: Integrated optic frequency shifter modulator. Electron. Lett. 17, 135 (1981)ADSCrossRefGoogle Scholar
  113. 5.113
    F. Heismann, R. Ulrich: Integrated-optical frequency translator with strip waveguide. Appl. Phys. Lett. 45, 490 (1984)ADSCrossRefGoogle Scholar
  114. 5.114
    M. Izutsu, S. Shikama, T. Sueta: Integrated optical SSB modulator and frequency shifter. IEEE J. QE-17, 2225 (1981)CrossRefGoogle Scholar
  115. 5.115
    K. Nosu, S.C. Rashleigh, H.F. Taylor, J.F. Weller: Acousto-optic frequency shifter for birefringent fiber. Electron. Lett. 19, 816 (1983)ADSCrossRefGoogle Scholar
  116. 5.116
    W.P. Risk, R.C. Youngquist, G.S. Kino, H.J. Shaw: Acousto-optic frequency shifting in birefringent fiber. Opt. Lett 9, 309 (1984) J.N. Blake, B.Y. Kim, H.E. Engan, H.J. Shaw: All-fiber acoustooptic frequency shifter using two-mode fiber. Proc. SPIE 179, 92 (1986)ADSCrossRefGoogle Scholar
  117. 5.117
    C.S. Tsai, C.L. Chang, C.C. Lee, K.Y. Liao: Acousto-optic Bragg deflection in channel optical waveguides. 1980 Topical Meeting on Integrated and Guided- Wave Optics, in Technical Digest of Post-Deadline Papers, IEEE Cat. No. 80CH1489-4QEA, pp.PD7-l to 4 C.S. Tsai, C.T. Lee, C.C. Lee: Efficient acousto-optic diffraction in crossed channel waveguides and resultant integrated optic module. 1982 IEEE Ultrason¬ics Symposium Proc., IEEE Cat. No. 82CH1823-4, pp.422–425Google Scholar
  118. 5.118
    R.H. Kingston, R.A. Becker, F.J. Leonbergen Broadband guided-wave optical frequency translator using an electro-optical Bragg array. Appl. Phys. Lett. 42, 759 (1983)ADSCrossRefGoogle Scholar
  119. 5.119
    L.M. Johnson, R.A. Becker, R.H. Kingston: Integrated-optical channel-waveguide frequency shifter. 1984 Topical Meeting on Integrated and Guided-Wave Optics, IEEE Cat. No.84CH1947-6, Techn. Digest, Paper WD4-1Google Scholar
  120. 5.120
    C.S. Tsai, Z.Y. Cheng: Novel guided-wave acousto-optic frequency shifting scheme using Bragg diffractions in cascade. Appl. Phys. Lett. 54, 1616–1618 (1989)ADSCrossRefGoogle Scholar
  121. 5.
    C.S. Tsai, Q. Li: Wideband optical frequency shifting using acousto-optic Bragg diffraction in a LiNb03 spherical waveguide (to be published in J. Appl. Phys.)Google Scholar
  122. 5.122
    J.W. Goodman: Introduction to Fourier Optics (New York, McGraw-Hill 1968) L. J. Cutrona, E.N. Lith, C.J. Palermo, L.J. Porcello: Optical data processing and filtering systems. IRE Trans. IT-6, 386–400 (1960) A. van der Lugt: Coherent optical processing. Proc. IEEE 62, 1300–1319 (1974)Google Scholar
  123. 5.123
    R.A. Sprague et al.: Optical signal processing for terminal defense radars. Itek Corp. Report 76-9528-1, for the project sponsored by Ballistic Missile Defense Advanced Technology Center (1976)Google Scholar
  124. 5.124
    K. Preston Jr.: A comparison of analog and digital techniques for pattern recognition. Proc. IEEE 60, 1216–1231 (1972)CrossRefGoogle Scholar
  125. 5.125
    R.W. Damon, W.T. Maloney, D.H. McMahon: In Physical Acoustics, Vol. 7, ed. by W.D. Mason, R.N. Thurston (Academic, New York 1970) A. Korpel: In Optical Information Processing, ed. by Y.E. Nestenikhin. (Plenum, New York 1975) R.A. Sprague: A review of acousto-optic signal correlators. Opt. Eng. 16 467–478 (1977) A. van der Lugt (ed.), Special section on acousto-optic signal processing, Proc. IEEE 69, 48–92 (1981) D. Casasent: Acousto-optic transducers in iterative optical vector-matrix processors. Appl. Opt. 21, 1958 (1982) D. Psaltis: Two-dimensional optical processing using one-dimensional input devices. Proc. IEEE 72, 962 (1984)Google Scholar
  126. 5.126
    M.C. Hamilton, D.A. Wille, W.J. Meceli: An integrated optical RF spectrum analyzer. Proc. 1976 Ultrasonics Symposium, IEEE Cat. No. 74CH1120-5SU, pp.218–222 D. B. Anderson, J.T. Boyd, M.C. Hamilton, R.R. August: An integrated-optical approach to the Fourier transform. IEEE J. QE-13, 268 (1977) C.S. Tsai: Guided-wave acousto-optic Bragg modulators for wideband integrated optic communications and signal processing. IEEE Trans. CAS-26, 1072–1098 (1979) M.K. Barnoski, B. Chen, T.R. Joseph, J.Y.M. Lee, O.G. Ramer, Integrated- optic spectrum analyzer. IEEE Trans. CAS-26, 1113–1124 (1979) E. Marx, L.D. Hutcheson, A.L. Keller Operational integrated-optic RF spectrum analyzer. Appl. Opt. 19, 3033–3034 (1980) R.L. Davis, F.S. Hickernell: An integrated optic spectrum analyzer with tin film lenses. 1981 Int’l. Conf. on Integrated Optics and Optical Fiber Communications, San Francisco, CA, Paper No. WE-6 V. Neuman, C.W. Pitt, L.M. Walpita: An integrated acousto-optic spectrum analyzer using grating components. Proc. 1st Europ. Conf. Integrated Optics, London, England (1981) pp.89–92 T. Suhara, H. Nishihara, J. Koyama: A folded-type integrated optic spectrum analyzer using butt-coupled chirped grating lenses. IEEE J. QE-18, 1057–1059 (1982) V.M. Ristic, S.A. Jones: Theoretical considerations related to development of an integrated acousto-optic receiver. Can. Electr. Eng. J. 7, 7–18 (1982) R.L. Davis, F.S. Hickernell: Application of wideband Bragg cells for integrated optic spectrum analyzer. Proc. SPIE 321, 141–148 (1982) V.M. Ristic, S.A. Jones, G.R. Dubois: Evaluation of an integrated acousto-optic receiver. Can. Electr. Eng. J. 8, 59–64 (1983) M. Kanazawa, T. Atsumi, M. Takami, T. Ito: High resolution integrated optic spectrum analyzer. 1983 Int’l. Conf. on Integrated Optics and Optical Fiber Communications, Tokyo, Japan, Paper No. 30B3-5 S. Valette, J. Lizet, P. Mottier, J.P. Jadot, S. Renard, A. Fournier, A.M. Grouil- let, P. Gidons, H. Denis: Integrated optical spectrum analyzer using planar technology on oxidized silicon substrate. Electron. Lett. 19 883[885 (1983) and IEEE Proc. H 131, 325–331 (1984) T. Suhara, T. Shiono, H. Nishihara, J. Koyama: An integrated-optic Fourier processor using an acousto-optic deflector and Fresnel lenses in As2S3 waveguide. J. Lightwave Technol. LT-1, 624–630 (1983) C. Stewart, G. Serivener, W.J. Stewart: Guided-wave acousto-optic spectrum analysis at frequencies above 1 GHz. 1981 Int’l Conf. on Integrated Optics and Optical Fiber Communications, in Technical Digest, p. 122Google Scholar
  127. 5.127
    E.T. Aksenov, N.A. Esepkina, A.A. Lipovskii, A.V. Pavenko: Prototype integrated acousto-optic spectrum analyzer. Soviet Tech. Lett. 6, 519–520 (1980)Google Scholar
  128. 5.128
    I.W. Yao, C.S. Tsai: Signal processing using guided-wave acousto-optic Bragg diffraction in LiNb03 waveguides. 1976 Int’l. Microwave Symposium, in Technical Digest, IEEE Cat. No. 876CH1087-7MITT, pp.21–23Google Scholar
  129. 5.129
    W.S.C. Chang, C.S. Tsai, R.A. Becker, I.W. Yao: Convolution using guided acousto-optic interaction in thin-film waveguides. IEEE J. QE-13, 208–215 (1977)CrossRefGoogle Scholar
  130. 5.130
    C.J. Kramer, M.N. Araghi, P. Das: Real-time convolution using acousto-optic diffraction from surface waves. Appl. Phys. Lett. 25, 180 (1974) N.J. Berg, B.J. Udelson: Large time-bandwidth acousto-optic convolver. 1976 Ultrasonics Symposium Proc., IEEE Cat. No. 76CH1120-5SU, pp.183–188ADSCrossRefGoogle Scholar
  131. 5.131
    R.A. Sprague, K.L. Koliopaulos: Time-integrating acousto-optic correlator. Appl. Opt. 15, 89 (1976)ADSCrossRefGoogle Scholar
  132. 5.132
    T.M. Turpin: Time-integrating optical processors. SPIE 154, 196–198 (1978)ADSGoogle Scholar
  133. 5.133
    I.W. Yao, C.S. Tsai: A time-integrating correlator using guided-wave acousto- optic interactions. 1978 Ultrasonic Symposium Proc., IEEE Cat. No. 78CH1344-ISU, pp.87–90Google Scholar
  134. 5.134
    H. Kogelnik, C.V. Shank: Stimulated emission in a periodic structure. Appl. Phys. Lett. 18, 152–154 (1971) M. Nakamura: Cw operation of distributed feedback GaAs-GaAlAs diode lasers at temperatures up to 300 K. Appl. Phys. Lett. 27, 403–504 (1975) A. Yariv: Introduction to Optical Electronics, 2nd. ed. ( Holt, Rinehart, Winston, New York 1976 )ADSCrossRefGoogle Scholar
  135. 5.135
    S. Wang: Principles of distributed feedback and distributed Bragg reflector lasers. IEEE J. QE-10, 413–427 (1974) F.K. Reinhart: GaAsAlxGa1-xAs injection lasers with distributed Bragg reflectors. Appl. Phys. Lett. 27, 45–48 (1975)CrossRefGoogle Scholar
  136. 5.136
    T.Q. Vu, J.A. Norris, C.S. Tsai: Planar waveguide lenses in GaAs by using ion milling. Appl. Phys. Lett. 54, 1098–1100 (1989)ADSCrossRefGoogle Scholar
  137. 5.137
    C.S. Tsai, J.K. Wang, K.Y. Liao: Acousto-optic time-integrating correlators using integrated optics technology. Proc. SPIE 180, 160–163 (1979)Google Scholar
  138. 5.138
    R.G. Hunsperger, A. Yariv, A. Lee: Parallel end-butt coupling for optical integrated circuits. Appl. Opt. 16, 1026–1032 (1977) J.D. Zino: Coupling of an injection laser diode to planar waveguide, at 1979 SPIE East, 18 April, Washington, DCADSCrossRefGoogle Scholar
  139. 5.139
    K.Y. Liao, C.C. Lee, C.S. Tsai: Time-integrating correlator using guided-wave anisotropic acousto-optic Bragg diffraction and hybrid integration. 1982 Topical Meeting on Integrated and Guided-Wave Optics, Pacific Grove, CA, in Techni¬cal Digest, IEEE Cat. No. 82CH1719-4, pO.WA4-l to 4 C.C. Lee, K.Y. Liao, C.S. Tsai: Acousto-optic time-integrating correlator using hybrid integrated optics. Proc. 1982 IEEE Ultrasonics Symposium, IEEE Cat. No. 82CH1823-4, pp.405–407Google Scholar
  140. 5.140
    C.M. Yerber, R.P. Kenan, J.R. Busch, Correlator based on an integrated optical spatial light modulator. Appl. Opt. 20, 1626 (1981) C. S. Tsai, D.Y. Zang, P. Les: High-packing density multichannel integrated- optic device modules in LiNbO3 for programmable correlation of binary sequences. Opt. Lett. 14, 889–891 (1989)CrossRefGoogle Scholar
  141. 5.141
    C.S. Tsai: LiNb03-based integrated-optic device modules for communication, computing, and signal processing. CLEO’76, in Technical Digest, IEEE Cat. No. 86CH2274-9, pp.44–46 D. Y. Zang, C.S. Tsai: Titanium-indiffused proton-exchanged waveguide lenses in LiNb03 for optical information processing. Appl. Opt. 25, 2264–2271 (1986) C.S. Tsai: Titanium-indiffused proton-exchanged microlens-based integrated optic Bragg modulator modules for optical computing. Proc. SPIE 634, 409–421 (1986) C.S. Tsai: Integrated-optical device modules in LiNb03 for computing and signal processing. J. Mod. Opt. 35, 965–977 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1990

Authors and Affiliations

  • Chen S. Tsai

There are no affiliations available

Personalised recommendations