Skip to main content

Special Signal Models and Extensions

  • Chapter
Book cover Linear Prediction Theory

Part of the book series: Springer Series in Information Sciences ((SSINF,volume 21))

  • 218 Accesses

Abstract

Until now, we have only considered the problem of predicting a process from its own subspace of past observations. The algorithms obtained for this simple case can, however, be extended to more involved problems. Assume that one needs to predict a process from the subspace of a related (correlated) process. This case is commonly referred to as the “joint-process” case of linear prediction. A second case of interest is system identification, where we assume not the simple AR process model, but possibly an MA (all-zero) process model, or even a more general ARMA (pole-zero) process model. This leads directly to the most general one-dimensional problem, namely, the identification of a multichannel (vector-autoregressive) process. In fact, it turns out that we can handle the MA (FIR) system identification problem with the joint-process approach, whereas the ARMA system identification problem can be embedded in a two-channel vector autoregressive process model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Chapter 10

  1. B. Friedlander: Lattice filters for adaptive processing. Proc. IEEE 70, 829–867 (1982)

    Article  Google Scholar 

  2. B. Porat, T. Kailath: Normalized lattice algorithms for least-squares FIR system identification. IEEE Trans. ASSP 31, 122–128 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Strobach: A fast recursive approach to FIR system identification. Proc. EUSIPCO-86, The Hague (1986) pp. 1055–1058

    Google Scholar 

  4. S.L. Marple: Efficient least-squares FIR system identification. IEEE Trans. ASSP 29, 62–73 (1981)

    Article  Google Scholar 

  5. B. Widrow, J.R. Glover, J.M. McCool, J. Kaunitz, C.S. Williams, R.H. Hearn, J.R. Zeidler, E. Dong, R.C. Goodlin: Adaptive noise cancelling: Principles and applications. Proc. IEEE 63, 1692–1716 (1975)

    Article  Google Scholar 

  6. D.T.L. Lee, B. Friedlander, M. Morf: Recursive ladder algorithms for ARMA modeling. IEEE Trans. Autom. Control 27, 753–764 (1981)

    Article  MathSciNet  Google Scholar 

  7. P. Strobach: Recursive covariance ladder algorithms for ARMA system identification. IEEE Trans. ASSP 36, 560–580 (1988)

    Article  MATH  Google Scholar 

  8. R.L. Moses, J.A. Cadzow, A.A. (Louis) Beex: A recursive procedure for ARMA modeling. IEEE Trans. ASSP 33, 1188–1196 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Li, B.W. Dickinson: Application of the lattice filter to robust estimation of AR and ARMA models. IEEE Trans. ASSP 36, 502–512 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. E. Karlsson and M.H. Hayes: ARMA modeling of linear time-varying systems: Lattice filter structures and fast RLS algorithms. IEEE Trans. ASSP 35, 994–1015 (1987)

    Article  Google Scholar 

  11. P. Whittle: On the fitting of multivariate auto-regressions and the approximate canonical factorization of a spectral density matrix. Biometrika 50, 129–134 (1963)

    MATH  MathSciNet  Google Scholar 

  12. R.A. Wiggins, E.A. Robinson: Recursive solution to the multichannel filtering problem. J. Geophys. Res. 70, 1885–1891 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  13. J.A. Cadzow: High performance spectral estimation — A new ARMA method. IEEE Trans. ASSP 28, 524–529 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  14. S.M. Kay: A new ARMA spectral estimator. IEEE Trans. ASSP 28, 585–588 (1980)

    Article  MATH  Google Scholar 

  15. S.L. Marple: Digital Spectral Analysis (Prentice-Hall, Englewood Cliffs, NJ 1987)

    Google Scholar 

  16. A.S. Willsky: Digital Signal Processing and Control and Estimation Theory (MIT Press, Cambridge, MA 1979)

    MATH  Google Scholar 

  17. M.D. Srinath, P.K. Rajasekaran: Statistical Signal Processing with Applications (Wiley, New York 1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strobach, P. (1990). Special Signal Models and Extensions. In: Linear Prediction Theory. Springer Series in Information Sciences, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75206-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75206-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75208-7

  • Online ISBN: 978-3-642-75206-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics