Engineering of protein bound iron-sulfur clusters

A tool for the study of protein and cluster chemistry and mechanism of iron-sulfur enzymes
  • Helmut Beinert
  • Mary Claire Kennedy
Part of the EJB Reviews book series (EJB REVIEWS, volume 1989)

Abstract

An increasing number of iron-sulfur (Fe-S) proteins are found in which the Fe-S cluster is not involved in net electron transfer, as it is in the majority of Fe-S proteins. Most of the former are (de)hydratases, of which the most extensively studied is aconitase. Approaches are described and discussed by which the Fe-S cluster of this enzyme could be brought into states of different structure, ligation, oxidation and isotope composition. The species, so obtained, provided the basis for spectroscopic and chemical investigations. Results from studies by protein chemistry, EPR, Mössbauer, 1H, 2H and 57Fe electron-nuclear double resonance spectroscopy are described. Conclusions, which bear on the electronic structure of the Fe-S cluster, enzyme-substrate interaction and the enzymatic mechanism, were derived from a synopsis of the recent work described here and of previous contributions from several laboratories. These conclusions are discussed and summarized in a final section.

Keywords

Sulfide Hydroxyl Citrate Carboxyl Disulfide 

Abbreviations

ENDOR

electron-nuclear double resonance

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, M. W. W. & Mortenson, L. E. (1984) J. Biol. Chem. 259, 7045–7055.PubMedGoogle Scholar
  2. 2.
    Kuchta, R. D., Hanson, G. R., Holmquist, B. & Abeles, R. H. (1986) Biochemistry 25, 7301–7307.PubMedCrossRefGoogle Scholar
  3. 3.
    Scopes, R. K. & Griffiths-Smith, K. (1984) Anal. Biochem. 136, 530–534.PubMedCrossRefGoogle Scholar
  4. 4.
    Kelly, J. M. & Scopes, R. K. (1986) FEBS Lett. 202, 274–276.CrossRefGoogle Scholar
  5. 5.
    Dreyer, J.-L. (1985) Eur. J. Biochem. 150, 145–154.PubMedCrossRefGoogle Scholar
  6. 6.
    Schweiger, G., Dutscho, R. & Buckel, W. (1987) Eur. J. Biochem. 169, 441–448.PubMedCrossRefGoogle Scholar
  7. 7.
    Flint, D. H. & Emptage, M. H. (1988) J. Biol. Chem. 263, 3558–3564.PubMedGoogle Scholar
  8. 8.
    Emptage, M. H. (1988) Biochemistry 27, 3104.Google Scholar
  9. 9.
    Kent, T. A., Dreyer, J.-L., Kennedy, M. C., Huynh, B. H., Emptage, M. H., Beinert, H. & Münck, E. (1982) Proc. Natl Acad. Sci. USA 79, 1096–1100.PubMedCrossRefGoogle Scholar
  10. 10.
    Martius C. (1937) Z. Physiol. Chem. 247, 104–110.CrossRefGoogle Scholar
  11. 11.
    Kennedy, C., Rauner, R. & Gawron, O. (1972) Biochem. Biophys. Res. Commun. 47, 740–745.PubMedCrossRefGoogle Scholar
  12. 12.
    Ruzicka, F. J. & Beinert, H. (1978) J. Biol. Chem. 253, 2514–2517.PubMedGoogle Scholar
  13. 13.
    Kennedy, M. C., Emptage, M. H., Dreyer, J.-L. & Beinert, H. (1983) J. Biol. Chem. 258, 11098–11105.PubMedGoogle Scholar
  14. 14.
    Beinert, H., Emptage, M. H., Dreyer, J.-L., Scott, R. A., Hahn, J. E., Hodgson, K. O. & Thomson, A. J. (1983) Proc. Natl Acad. Sci. USA 80, 393–396.PubMedCrossRefGoogle Scholar
  15. 15.
    Emptage, M. H., Dreyer, J.-L., Kennedy, M. C. & Beinert, H. (1983) J. Biol. Chem. 258, 11106–11 111.PubMedGoogle Scholar
  16. 16.
    Robbins, A. H. & Stout, C. D. (1989) Proteins, structure, function and genetics 5, 289–312.CrossRefGoogle Scholar
  17. 17.
    Robbins, A. H. & Stout, C. D. (1989) Procl. Natl Acad. Sci. USA 86, 3639–3643.CrossRefGoogle Scholar
  18. 18.
    Kennedy, M. C., Kent, T. A., Emptage, M. H., Merkle, H., Beinert, H. & Münck, E. (1984) J. Biol. Chem. 259, 14463–14471.PubMedGoogle Scholar
  19. 19.
    Piszkiewicz, D. (1982) Fed. Proc. 41, 890.Google Scholar
  20. 20.
    Plank, D. W., Kennedy, M. C., Beinert, H. & Howard, J. B. (1989) J. Biol. Chem., in the press.Google Scholar
  21. 21.
    Kennedy, M. C., Emptage, M. H. & Beinert, H. (1984) J. Biol. Chem. 259, 3145–3151.PubMedGoogle Scholar
  22. 22.
    Emptage, M. H., Kent, T. A., Kennedy, M. C., Beinert, H. & Münck, E. (1983) Proc. Natl Acad. Sci. USA 80, 4674–4678.PubMedCrossRefGoogle Scholar
  23. 23.
    Rabinowitz, J. C. (1972) Methods Enzymol. 24, 440–442.Google Scholar
  24. 24.
    Kennedy, M. C. & Beinert, H. (1988) J. Biol. Chem. 263, 8194–8198.PubMedGoogle Scholar
  25. 25.
    Petering, D., Fee, J. A. & Palmer, G. (1971) J. Biol. Chem. 246, 643–653.PubMedGoogle Scholar
  26. 26.
    Thomson, A. J. (1985) in Top. Mol. Struct. Biol. 6, 79–120.Google Scholar
  27. 27.
    Moulis, J.-M. & Meyer, J. (1982) Biochemistry 21, 4762–4771.PubMedCrossRefGoogle Scholar
  28. 28.
    Tsibris, J. C. M., Namtvedt, M. J. & Gunsalus, I. C. (1968) Biochem. Biophys. Res. Commun. 30, 323–327.PubMedCrossRefGoogle Scholar
  29. 29.
    Wood, J. L. (1987) Methods Enzymol. 143, 25–29.PubMedGoogle Scholar
  30. 30.
    Rydén, L., Öfverstedt, L.-G., Beinert, H., Emptage, H. H. & Kennedy, M. C. (1984) J. Biol. Chem. 259, 3141–3144.PubMedGoogle Scholar
  31. 31.
    Plank, D. W. & Howard, J. B. (1988) J. Biol. Chem. 263, 8184–8189.PubMedGoogle Scholar
  32. 32.
    Hagen, K. S., Watson, A. D. & Holm, R. H. (1983) J. Am. Chem. Soc. 705, 3905–3913.CrossRefGoogle Scholar
  33. 33.
    Hausinger, R. P. & Howard, J. B. (1983) J. Biol. Chem. 258, 13486–13492.PubMedGoogle Scholar
  34. 34.
    Martin, A. E., Burgess, B. K., Stout, C. D., Cash, V., Dean, D. R., Jensen, G. & Stephens, P. J. (1989) Proc. Natl Acad. Sci. USA, in the press.Google Scholar
  35. 35.
    Girerd, J.-J., Papaefthymiou, G. C., Watson, A. D., Gamp, E., Hagen, K. S., Edelstein, N., Frankel, R. B. & Holm, R. H. (1984) J. Am. Chem. Soc. 106, 5941–5947.CrossRefGoogle Scholar
  36. 36.
    Dreyer, J.-L., Beinert, H., Keana, J. F. W., Hankovszky, O. H., Hideg, K., Eaton, S. S. & Eaton, G. R. (1983) Biochim. Biophys. Acta 745, 229–236.PubMedCrossRefGoogle Scholar
  37. 37.
    Kennedy, M. C., Spoto, G., Emptage, M. H. & Beinert, H. (1988) J. Biol. Chem. 263, 8190–8193.PubMedGoogle Scholar
  38. 38.
    Kent, T. A., Emptage, M. H., Merkle H., Kennedy, M. C., Beinert, H. & Münck, E. (1985) J. Biol. Chem. 260, 6871–6881.PubMedGoogle Scholar
  39. 39.
    Cammack, R., Dickson, D. P. E. & Johnson, C. E. (1977) in Iron-sulfur proteins (Lovenberg, W., ed.) vol. 3, pp. 283–330, Academic Press, New York.Google Scholar
  40. 40.
    Debrunner, P. G., Münck, E., Que, L. & Schulz, C. E. (1977) in Iron-sulfur proteins (Lovenberg, W., ed.) vol. 3, pp. 381–417, Academic Press, New York.Google Scholar
  41. 41.
    Bill, E., Haas, C., Ding, X.-Q., Maret, W., Winkler, H. & Trautwein, A. C. (1989) Eur. J. Biochem. 180, 111–121.PubMedCrossRefGoogle Scholar
  42. 42.
    Robin, M. D. & Day, P. (1967) Adv. Inorg. Chem. Radiochem. 10, 247–405.Google Scholar
  43. 43.
    Münck, E., Debrunner, P. G., Tsibris, J. C. M. & Gunsalus, I. C. (1972) Biochemistry 11, 855–863.PubMedCrossRefGoogle Scholar
  44. 44.
    Rius, G. & Lamotte, B. (1989) J. Am. Chem. Soc. 111, 2464–2469.CrossRefGoogle Scholar
  45. 45.
    Kanatzidis, M. G., Ryan, M., Coucouvanis, D., Simopoulos, A. & Kostikas, A. (1983) Inorg. Chem. 22, 179–182.CrossRefGoogle Scholar
  46. 46.
    Johnson, R. E., Papaefthymiou, G. C., Frankel, R. B. & Holm, R. H. (1983) J. Am. Chem. Soc. 105, 7280–7287.CrossRefGoogle Scholar
  47. 47.
    Noodleman, L., Norman, J. G. Jr, Osborne, J. H., Aizman A. & Case, D. A. (1985) J. Am. Chem. Soc. 107, 3418–3426.CrossRefGoogle Scholar
  48. 48.
    Meyer, J., Gaillard, J. & Moulis, J.-M. (1988) Biochemistry 27, 6150–6156.PubMedCrossRefGoogle Scholar
  49. 49.
    Schloss, J. V., Porter, D. J. D., Bright, H. J. & Cleland, W. W. (1980) Biochemistry 19, 2358–2362.PubMedCrossRefGoogle Scholar
  50. 50.
    Telser, J., Emptage, M. H., Merkle, H., Kennedy, M. C., Beinert, H. & Hoffman, B. M. (1986) J. Biol. Chem. 261, 4840–4846.PubMedGoogle Scholar
  51. 51.
    Kennedy, M. C., Werst, M., Telser, J., Emptage, M. H., Beinert, H. & Hoffman, B. M. (1987) Proc. Natl Acad. Sci. USA 84, 8854–8858.PubMedCrossRefGoogle Scholar
  52. 52.
    Rose, I. A. & O’Connell, E. L. (1967) J. Biol. Chem. 242, 1870–1879.PubMedGoogle Scholar
  53. 53.
    Gawron, O., Glaid, A. J. & Fondy, T. P. (1961) J. Am. Chem. Soc. 83, 3634–3640.CrossRefGoogle Scholar
  54. 54.
    Münck, E. & Kent, T. A. (1986) Hyperfine Interactions 27, 161–172.CrossRefGoogle Scholar
  55. 55.
    Noodleman, L. (1988) Inorg. Chem. 27, 3677–3679.CrossRefGoogle Scholar
  56. 56.
    Noodleman, I., Case, D. A. & Aizman, A. (1988) J. Am. Chem. Soc. 110, 1001–1005.CrossRefGoogle Scholar
  57. 57.
    Orme-Johnson, W. H., Hansen, R. E., Beinert, H., Tsibris, J. C. M., Bartholomaus, R. C. & Gunsalus, I. C. (1968) Proc. Natl Acad Sci. USA 60, 368–372.PubMedCrossRefGoogle Scholar
  58. 58.
    Schloss, J. V., Emptage, M. H. & Cleland, W. W. (1984) Biochemistry 23, 4572–4580.PubMedCrossRefGoogle Scholar
  59. 59.
    Gahan, L. R., Harrowfield, J. M., Herlt, A. J., Lindoy, L. F., Whimp, P. O. & Sargeson, A. M. (1985) J. Am. Chem. Soc. 107, 6231–6242.CrossRefGoogle Scholar
  60. 60.
    Glusker, J. P. (1980) Acc. Chem. Res. 13, 345–352.CrossRefGoogle Scholar
  61. 61.
    Emptage, M. H. (1988) in Metal clusters in proteins (Que, L. Jr, ed.) ACS Symposium Series 372, pp. 343–371, Am. Chem. Soc. Washington, DC.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Helmut Beinert
    • 1
    • 2
  • Mary Claire Kennedy
    • 1
  1. 1.Department of BiochemistryMedical College of WisconsinMilwaukeeUSA
  2. 2.National Biomedical ESR CenterMedical College of WisconsinMilwaukeeUSA

Personalised recommendations