Skip to main content

Association of DNA with Nuclear Matrix

  • Chapter

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 11))

Abstract

There is increasing evidence that chromosomal DNA is attached to a nuclear skeleton or matrix. The composition and morphology of the matrix appears to be highly complex in keeping with the long list of known and postulated functions, which seems to include nearly all important processes of the nucleus, such as transcription, RNA processing and transport, replication, and the organization of interphase chromatin. A significant problem is, however, that nuclear matrices are operationally defined structures and that results obtained by use of different methods are not comparable. Depending on various reports, the matrix contains a more-or-less wide spectrum of nonhistone proteins but few of these (mostly enzymes) have been identified (Razin et al. 1981; Smith and Berezney 1983; Staufenbiel and Deppert 1983; Berrios et al. 1985; Jackson and Cook 1986; Lehner et al. 1986; Pieck et al. 1987; Tubo et al. 1987; Tubo and Berezney 1987a, b, c; Fey and Penman 1988). A class of major structural proteins such as the histones in chromatin or the lamins in the nuclear lamina has not yet been found in nuclear matrix preparations. The matrix, when prepared with 2 M NaC1 and DNase I digestion (Berezney and Coffey 1974), further contains less than 1% of the nuclear DNA. Several laboratories have studied the distribution of nuclear DNA in matrices. Repeatedly, actively transcribed genes and their flanking sequences were found to be enriched in nuclear matrices (Jackson et al. 1981; Robinson et al. 1982; Ciejek et al. 1983; Hentzen et al. 1984; Jost and Seldran 1984; Rose and Garrard 1984; Strätling et al. 1986; Strätling 1987). An enrichment of repeated DNA sequences in nuclear matrix preparations was also reported (Goldberg et al. 1983; Chimera and Musich 1985).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amati BB, Gasser SM (1988) Chromosomal ARS and CEN elements bind specifically to the yeast nuclear scaffold. Cell 54: 967–978

    Article  PubMed  CAS  Google Scholar 

  • Anderson JN (1986) Detection, sequence patterns and function of unusual DNA structures. Nucleic Acids Res 14: 8513–8533

    Article  PubMed  CAS  Google Scholar 

  • Benyajati C, Worcel A (1976) Isolation, characterization, and structure of the folded interphase genome of Drosophila melanogaster. Cell 9: 393–407

    Article  PubMed  CAS  Google Scholar 

  • Berezney R, Coffey D (1974) Identification of a nuclear protein matrix. Biochem Biophys Res Commun 60: 1410–1419

    Article  PubMed  CAS  Google Scholar 

  • Berrios M, Osheroff N, Fisher PA (1985) In situ localization of DNA topoisomerase II, a major polypeptide component of the Drosophila nuclear matrix fraction. Proc Natl Acad Sci USA 82: 4142–4146

    Article  PubMed  CAS  Google Scholar 

  • Bode J, Maass K (1988) Chromatin domain surrounding the human interferon-ß gene as defined by scaffold-attached regions. Biochemistry 27: 4706–4711

    Article  PubMed  CAS  Google Scholar 

  • Brasch K (1976) Studies on the role of histones HI (fl) and H5 (f2c) in chromatin structure. Exp Cell Res 101: 396–410

    Article  PubMed  CAS  Google Scholar 

  • Brewer BJ, Fangman WL (1987) The localization of replication origins origins on ARS plasmids in S. cerevisiae. Cell 51: 463–471

    Article  PubMed  CAS  Google Scholar 

  • Burhans WC, Selegue JE, Heintz NH (1986) Isolation of the origin of replication associated with the amplified Chinese hamster dihydrofolate reductase domain. Proc Natl Acad Sci USA 83: 7790–7794

    Article  PubMed  CAS  Google Scholar 

  • Chimera JA, Musich PR (1985) The association of the interspersed repetitive KpnI sequences with the nuclear matrix. J Biol Chem 260: 9373–9379

    PubMed  CAS  Google Scholar 

  • Ciejek EM, Tsai M-J, O’Malley BW (1983) Actively transcribed genes are associated with the nuclear matrix. Nature 306: 607–609

    Article  PubMed  CAS  Google Scholar 

  • Cockerill PN, Garrard WT (1986a) Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell 44: 273–282

    Article  PubMed  CAS  Google Scholar 

  • Cockerill PN, Garrard WT (1986b) Chromosomal loop anchorage sites appear to be evolutionarily conserved. FEBS Lett 204: 5–7

    Article  PubMed  CAS  Google Scholar 

  • Cockerill PN, Yuen M-H, Garrard WT (1987) The enhancer of the immunoglobulin heavy chain locus is flanked by presumptive chromosomal loop anchorage elements. J Biol Chem 262: 5394–5397

    PubMed  CAS  Google Scholar 

  • Cook PR, Brazell IA (1978) Spectrofluorometric measurement of the binding of ethidium to superhelical DNA from cell nuclei. Eur J Biochem 84: 465–477

    Article  PubMed  CAS  Google Scholar 

  • Fey EG, Penman S (1988) Tumor promoters induce a specific morphological signature in the nuclear matrix-intermediate filament scaffold of Madin-Darby canine kidney (MDCK) cell colonies. Proc Natl Acad Sci USA 85: 121 125

    Google Scholar 

  • Fritton HP, Igo-Komenes T, Nowock J, Strech-Jurk U, Theisen M, Sippel AE (1984) Alternative sets of DNase I-hypersensitive sites characterize the various functional states of the chicken lysozyme gene. Nature 311: 163–165

    Article  PubMed  CAS  Google Scholar 

  • Gasser SM, Laemmli UK (1986a) The organization of chromatin loops:characterization of a scaffold attachment site. EMBO J 5: 511–518

    PubMed  CAS  Google Scholar 

  • Gasser SM, Laemmli UK (1986b) Cohabitation of scaffold binding regions with upstream/enhancer elements of three developmentally regulated genes of D. melanogaster. Cell 46: 521–530

    Article  PubMed  CAS  Google Scholar 

  • Gasser SM, Laemmli UK (1987) A glimpse at chromosomal order. Trends Genet 3: 16–22

    Article  CAS  Google Scholar 

  • Goldberg GI, Collier I, Cassel A (1983) Specific DNA sequences associated with the nuclear matrix in synchronized mouse 3T3 cells. Proc Natl Acad Sci USA 80: 6887–6891

    Article  PubMed  CAS  Google Scholar 

  • Heck MMS, Earnshaw WC (1986) Topoisomerase II:a specific marker for cell proliferation. J Cell Biol 103: 2569–2581

    Article  PubMed  CAS  Google Scholar 

  • Hentzen PC, Rho JH, Bekhor I (1984) Nuclear matrix DNA from chicken erythrocytes contains ß-globin gene sequences. Proc Natl Acad Sci USA 81: 304–307

    Article  PubMed  CAS  Google Scholar 

  • Hiromi Y, Kuroiwa A, Gehring WJ (1985) Control elements of the Drosophila segmentation gene fushi tarazu. Cell 43: 603–613

    Article  PubMed  CAS  Google Scholar 

  • Igo-Kemenes T, Zachau J (1978) Domains in chromatin structure. Cold Spring Harbor Symp Quant Biol 42: 109–118

    PubMed  CAS  Google Scholar 

  • Izaurralde E, Mirkovitch J, Laemmli UK (1988) Interaction of DNA with nuclear scaffolds in vitro. J Mol Biol 200: 111–125

    Article  PubMed  CAS  Google Scholar 

  • Jackson DA, Cook PR (1986) Different populations of DNA polymerase a in Hela cells. J Mol Biol 192: 77–86

    Article  PubMed  CAS  Google Scholar 

  • Jackson DA, McCready SJ, Cook PR (1981) RNA is synthesized at the nuclear cage. Nature 292: 552–555

    Article  PubMed  CAS  Google Scholar 

  • Jarman AP, Higgs DR (1988) Nuclear scaffold attachment sites in the human globin gene complexes. EMBO J 7: 3337–3344

    PubMed  CAS  Google Scholar 

  • Jost J-P, Seldran M (1984) Association of transcriptionally active vitellogenin II gene with the nuclear matrix of chicken liver. EMBO J 3: 2005–2008

    PubMed  CAS  Google Scholar 

  • Käs E, Chasin LA (1987) Anchorage of the Chinese hamster dihydrofolate reductase gene to the nuclear scaffold occurs in an intragenic region. J Mol Biol 198: 677–692

    Article  PubMed  Google Scholar 

  • Klug A, Rhodes D, Smith J, Finch JT, Thomas JO (1980) A low resolution structure for the histone core of the nucleosome. Nature 287: 509–516

    Article  PubMed  CAS  Google Scholar 

  • Lebkowski JS, Laemmli UK (1982) Evidence for two levels of DNA folding in histone-depleted Hela interphase nuclei. J Mol Biol 156: 309–324

    Article  PubMed  CAS  Google Scholar 

  • Lehner CF, Eppenberger HM, Fakan S, Nigg EA (1986) Nuclear substructure antigens. Monoclonal antibodies against components of nuclear matrix preparations. Exp Cell Res 162: 205–219

    Google Scholar 

  • Lorch Y, LaPointe JW, Kornberg RD (1987) Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 49: 203–210

    Article  PubMed  CAS  Google Scholar 

  • Mirkovitch J, Mirault M-E, Laemmli UK (1984) Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell 39: 223–232

    Article  PubMed  CAS  Google Scholar 

  • Mirkovitch J, Spierer P, Laemmli UK (1986) Genes and loops in 320,000 base-pairs of the Drosophila melanogaster chromosome. J Mol Biol 190: 255–258

    Article  PubMed  CAS  Google Scholar 

  • Mirkovitch J, Gasser SM, Laemmli UK (1988) Scaffold attachment of DNA loops in metaphase chromosomes. J Mol Biol 200: 101–109

    Article  PubMed  CAS  Google Scholar 

  • Paulson JR, Laemmli UK (1977) The structure of histone-depleted metaphase chromosomes. Cell 12: 817–828

    Article  PubMed  CAS  Google Scholar 

  • Phi-Van L, Strätling WH (1988) The matrix attachment regions of the chicken lysozyme gene co-map with the boundaries of the chromatin domain. EMBO J 7: 655–664

    CAS  Google Scholar 

  • Pieck ACM, Rijken AAM, Wanka F (1987) Nuclear matrix and chromosome scaffold preparations of in vitro cultured bovine liver cells have two proteins in common. FEBS Lett 212: 276–280

    Article  PubMed  CAS  Google Scholar 

  • Razin SV, Chernokhvostov VV, Roodyn AV, Zbarsky IB, Georgiev GP (1981) Proteins tightly bound to DNA in the regions of DNA attachment to the skeletal structures of interphase nuclei and metaphase chromosomes. Cell 27: 65–73

    Article  PubMed  CAS  Google Scholar 

  • Robinson SI, Nelkin BD, Vogelstein B (1982) The ovalbumin gene is associated with the nuclear matrix of chicken oviduct cells. Cell 28: 99–106

    Article  PubMed  CAS  Google Scholar 

  • Rose SM, Garrard WT (1984) Differentiation-dependent chromatin alterations precede and accompany transcription of immunoglobulin light chain genes. J Biol Chem 259: 8534–8544

    PubMed  CAS  Google Scholar 

  • Rowe TC, Wang JC, Liu LF (1986) In vivo localization of DNA topoisomerase II cleavage sites on Drosophila heat shock chromatin. Mol Cell Biol 6: 985–992

    PubMed  CAS  Google Scholar 

  • Samal B, Worcel A, Louis C, Schedl P (1982) Chromatin structure of the histone genes of D. melanogaster. Cell 23: 401–409

    Article  Google Scholar 

  • Smith HC, Berezney R (1983) Dynamic domains of DNA polymerase a in regenerating rat liver. Biochemistry 22: 3042–3046

    Article  PubMed  CAS  Google Scholar 

  • Solomon MJ, Strauss F, Varshaysky A (1986) A mammalian high mobility group protein recognizes any stretch of six AT base pairs in duplex DNA. Proc Natl Acad Sci USA 83: 1276–1280

    Article  PubMed  CAS  Google Scholar 

  • Staufenbiel M, Deppert W (1983) Different structural systems of the nucleus are targets for SV40 large T antigen. Cell 33: 173–181

    Article  PubMed  CAS  Google Scholar 

  • Stief A, Winter DM, Strätling WH, Sippel AE (1989) A nuclear DNA attachment element mediates elevated and position-independent gene activity. Nature 341: 343–345

    Article  PubMed  CAS  Google Scholar 

  • Strätling W H (1987) Gene-specific differences in the supranucleosomal organization of rat liver chromatin. Biochemistry 26: 7893–7899

    Article  PubMed  Google Scholar 

  • Strätling WH, Dölle A, Sippel AE (1986) Chromatin structure of the chicken lysozyme gene domain as determined by chromatin fractionation and micrococcal nucleus digestion. Biochemistry 25: 495–502

    Article  PubMed  Google Scholar 

  • Tanaka K, lino (1973) Demonstration of fibrous components in hepatic interphase nuclei by high resolution scanning electron microscopy. Exp Cell Res 81: 40–46

    Google Scholar 

  • Trendelenburg MF, Scheer U, Franke WW (1973) Structural organization of the transcription of ribosomal DNA in oocytes of the house cricket. Nature New Biol 245: 167–170

    PubMed  CAS  Google Scholar 

  • Tubo RA, Berezney R (1987a) Pre-replicative association of multiple replicative enzyme activities with the nuclear matrix during rat liver regeneration. J Biol Chem 262: 1148–1154

    PubMed  CAS  Google Scholar 

  • Tubo RA, Berezney R (1987b) Identification of 100 and 150 S DNA polymerase a-primase megacomplexes solubilized from the nuclear matrix of regenerating rat liver. J Biol Chem 262: 5857–5865

    PubMed  CAS  Google Scholar 

  • Tubo RA, Berezney R (1987c) Nuclear matrix-bound DNA primase. Elucidation of an RNA priming system in nuclear matrix isolated from regenerating rat liver. J Biol Chem 262: 6637–6642.

    Google Scholar 

  • Tubo RA, Martelli AM, Berezney R (1987) Enhanced processivity of nuclear matrix bound DNA polymerase a from regenerating rat liver. Biochemistry 26: 5710–5718

    Article  PubMed  CAS  Google Scholar 

  • Udvardy A, Schedl P, Sander M, Hsieh T (1985) Novel partitioning of DNA cleavage sites for Drosophila topoisomerase II. Cell 40: 933–941

    Article  PubMed  CAS  Google Scholar 

  • Yunis JJ, Bahr GF (1979) Chromatin fiber organization of human interphase and prophase chromosomes. Exp Cell Res 122: 63–72

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Phi-Van, L., Strätling, W.H. (1990). Association of DNA with Nuclear Matrix. In: Jeanteur, P., Kuchino, Y., Müller, W.E.G., Paine, P.L. (eds) Progress in Molecular and Subcellular Biology. Progress in Molecular and Subcellular Biology, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75178-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75178-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75180-6

  • Online ISBN: 978-3-642-75178-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics