Skip to main content

Chloroplast tRNAs and tRNA genes: structure and function

  • Conference paper
The Translational Apparatus of Photosynthetic Organelles

Part of the book series: NATO ASI Series ((ASIH,volume 55))

Abstract

Chloroplast (cp) genomes of three land plants, namely tobacco, rice and Marchantia polymorpha, have now been completely sequenced. In tobacco (Fig. 1), the cp genome codes for 30 tRNA species (Shinozaki et al. 1986; Sugiura and Wakasugi 1989), 23 being encoded by single genes (located in the large single copy (LSC) or small single copy (SSC) regions), 7 being encoded by genes present twice (in the IR sequences). In rice the same set of tRNA genes was found (Hiratsuka et al. 1989). However, a total of 31 tRNA species are encoded by the liverwort Marchantia polymorpha cp genome; the additional tRNA gene (with respect to tobacco and rice) is a tRNAAr9(CCG) gene (Ohyama et al., 1986). Pseudogenes have been found in a number of cp genomes. For instance, a pseudo-tRNAIIe and a pseudo-tRNATrP genes (El-Gewely et al. 1984) have been found in Euglena gracilis strain bacillaris. A pseudo-tRNAPro gene with a GGG anticodon has been sequenced in liverwort (Ohyama et al. 1986). A tRNAfMet/GIy chimeric structure has been described in wheat (Howe 1985) and in rice (Hiratsuka et al. 1989). A pseudo-tRNAThr gene has been reported in barley (Oliver and Poulsen 1984), wheat (Quigley and Weil 1985) and rice (Hiratsuka et al. 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Burkard, G., Vaultier J. P., Weil, J. H. (1972). Differences in the level of plastid-specific tRNAs in chloroplasts and etioplasts of Phaseolus vulgaris. Phytochem. 11, 1351–1353

    Article  CAS  Google Scholar 

  • El-Gewely, M. R., Helling, R. B., and Dibbits, J. G. T. (1984). Sequence and evolution of the regions between the rrn operons in the chloroplast genome of Euglena gracilis bacillaris. Mol. Gen. Genet. 194, 432–443

    Article  PubMed  CAS  Google Scholar 

  • Evrard, J. L., Kuntz, M., Straus, N. A., and Weil, J. H. (1988). A class-l intron In a cyanelle tRNA gene from Cyanophora paradoxal phylogenetic relationship between cyanelles and plant chloroplasts. Gene 71, 115–122

    Article  PubMed  CAS  Google Scholar 

  • Francis, M., and Dudock, B. (1982). Nucleotide sequence of a spinach chloroplast isoleucine tRNA. J. Biol. Chem. 257, 11195–11198

    PubMed  CAS  Google Scholar 

  • Greenberg, B. M., Gruissem, W., and Hallick, R. B. (1984a). Accurate processing and pseudouridylation of chloroplast transfer RNA in a chloroplast transcription system. Plant Mol. Biol. 3, 97–109

    Article  CAS  Google Scholar 

  • Greenberg, B. M., and Hallick, R. B. (1986). Accurate transcription and processing of 19 Euglena chloroplast tRNAs in a Euglena soluble extract. Plant Mol. Biol. 6,89–100

    Article  CAS  Google Scholar 

  • Gruissem, W., and Zurawski, G. (1985a). Identification and mutational analysis of the promoter for a spinach chloroplast transfer RNA gene. EMBO J. 4, 1637–1644.

    PubMed  CAS  Google Scholar 

  • Gruissem, W., and Zurawski, G. (1985b). Analysis of promoter regions for the spinach chloroplast rbcL, apB and psbA genes. EMBO J. 4, 3375–3383

    PubMed  CAS  Google Scholar 

  • Gruissem, W., Elsner-Menzel, C., Latshaw, S., Narita, J. O., Schaffer, M. A., and Zurawski, G. (1986). A subpopulation of spinach chloroplast tRNA genes does not require upstream promoter elements for transcription. Nucl. Acids Res. 14, 7541–7556

    Article  PubMed  CAS  Google Scholar 

  • Guthrie, C., and McClain, W. H. (1979). Rare transfer ribonucleic acid essential for phage growth. Nucleotide sequence comparison of normal and mutant T4 isoleucine-accepting transfer ribonucleic acid. Biochem. 18, 3786–3795

    Article  CAS  Google Scholar 

  • Hiratsuka, J., Shimada, H., Whittier, R., Ishibashi, T., Sakamoto, M., Mori, M., Kondo, C., Honji, Y., Sun, C. R., Meng, B. Y., Li, Y. Q., Kanno, A., Nishizawa, Y., Hirai, A., Shinozaki, K., and Sugiura, M. (1989). The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet. 217,185–194

    Article  PubMed  CAS  Google Scholar 

  • Howe, C. J. (1985). The endpoints of an inversion in wheat chloroplast DNA are associated with short repeated sequences containing homology to att-lambda. Curr. Genet. 10, 139–145

    Article  PubMed  CAS  Google Scholar 

  • Jayabaskaran, C., Kuntz, M., Guillemaut, P., and Weil, J. H. (1989). Variations in the levels of chloroplast tRNAs and aminoacyl-tRNA synthetases in senescing leaves of Phaseolus vulgaris. Plant Physiol. 92, 136–140

    Article  Google Scholar 

  • Kashdan, M. A., and Dudock, B. S. (1982). The gene for a spinach chloroplast isoleucine tRNA has a methionine anticodon. J. Biol. Chem. 257, 11191–11194

    PubMed  CAS  Google Scholar 

  • Markowicz, Y., Mache, R., and Loiseaux-de Goër, S. (1988). Sequence of the plastid rDNA spacer of the brown alga Pylaiella littoralis (L.) Kjellm. Evolutionary significance. Plant Mol. Biol. 10,465–469

    Article  CAS  Google Scholar 

  • Merrick, W. C., and Dure, L. S. (1972). The developmental biochemistry of cotton seed embryogenesis and germination. IV. Levels of cytoplasmic and chloroplastic transfer ribonucleic acid species. J. Biol. Chem. 247, 7988–7999

    PubMed  CAS  Google Scholar 

  • Michel, F., and Dujon, B. (1983). Conservation of RNA secondary structures in two intron families including mitochondrial-, chloroplast-, and nuclear-encoded members. EMBO J. 2,33–38

    PubMed  CAS  Google Scholar 

  • Muramatsu, T., Nishihawa, K., Nemoto, F., Kuchino, Y., Nishinura, S., Miyazawa, T., and Yokoyama, S. (1988a). Codon and amino acid specificities of a transfer RNA are both converted by a single post-transcriptional modification. Nature 336,179–181.

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu, T., Yokoyama, S., Horie, N., Matsuda, A., Veda, T., Yamaizumi, Z., Kuchino, Y., Nishinura, S., and Miyazawa, T. (1988b). A novel lysine-substituted nucleoside in the first position of the anticodon of minor isoleucine tRNA from Escherichia coli. J. Biol. Chem. 263,9261–9267

    PubMed  CAS  Google Scholar 

  • Ohme, M., Kamogashira, T., Shinozaki, K., and Sugiura, M. (1985). Structure and cotranscription of tobacco chloroplast genes for tRNAGlu(UCC), tRNATyr(GUA) and tRNAASP(GUC). Nucl. Acids Res. 13,1045–1056

    Article  PubMed  CAS  Google Scholar 

  • Ohyama, K., Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, Y., Takeuchi, M., Chang, Z., Aota, S., Inokuchi, H., and Ozeki, H. (1986). Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322,572–574

    Article  CAS  Google Scholar 

  • Oliver, R. P. and Poulsen, C. (1984). Structure of a heavily transcribed region of barley chloroplast DNA. Transfer RNA genes for serine (UGA), glycine (GCCUCC), formyl-methionine and threonine (GGU). Carlberg Res. Commun. 49, 647–673

    Article  CAS  Google Scholar 

  • Pfitzinger, H., Guillemaut, P., Weil, J. H., and Pillay, D. T. N. (1987). Adjustment of the tRNA population to the codon usage in chloroplasts. Nucl. Acids Res. 15, 1377–1386

    Article  PubMed  CAS  Google Scholar 

  • Pfitzinger, H., Weil, J.H., Pillay, D.T.N, and Guillemaut, P. (1989) Preparation of a tRNA-dependent wheat germ protein synthesizing system. Plant Mol. Biol. 12, 301–306

    Article  CAS  Google Scholar 

  • Pfitzinger, H., Weil, J.H., Pillay, D.T.N, and Guillemaut, P. (1990a). Codon recognition mechanisms in plant chloroplasts. Plant Mol. Biol. 14, 805–814

    Article  PubMed  CAS  Google Scholar 

  • Pfitzinger, H., Maréchal-Drouard L, Pillay, D.T.N., Weil, J.H. and Guillemaut, P. (1990b) Variations during leaf development of the relative amounts of two bean (Phaseolus vulgaris) chloroplast tRNAsphe which differ in their minor nucleotide content. Plant Mol. Biol. 14, 969–975

    Article  PubMed  CAS  Google Scholar 

  • Pillay, D. T. N., Singh, G. P., and Guillemaut, P. (1984). Localization of four genes for three tRNALeus on the physical map of the soybean (Glycine max L.) chloroplast genome. Gene 29,351–354

    Article  PubMed  CAS  Google Scholar 

  • Quigley, F., and Weil, J. H. (1985). Organization and sequence of five tRNA genes and of an unidentified reading frame in the wheat chloroplast genome: evidence for gene rearrangement during the evolution of chloroplast genomes. Curr. Genet. 9, 495–503.

    Article  PubMed  CAS  Google Scholar 

  • Samuelson, T., Elias, P., Lusting, F., Axberg, T., Fölsch, G., Akeson, B., and Lagerkvist, U. (1980). Aberrations of the classic codon reading scheme during protein synthesis in vitro. J. Biol. Chem. 255, 4583–4588

    Google Scholar 

  • Schön, A., Krupp, G., Gough, S., Berry-Lowe, S., Kannangara, C. G., and Söll, D. (1986). The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 322, 281–284

    Article  PubMed  Google Scholar 

  • Schön, A., Kannangara, C. G., Gough, S., and Söll, D. (1988). Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature 331,187–190

    Article  PubMed  Google Scholar 

  • Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokata, J., Yamaguchi-Shinozaki, K., Ohto, C., Torazawa, K., Meng, B. Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimida, H., and Sugiura, M. (1986). The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5, 2043–2049

    PubMed  CAS  Google Scholar 

  • Sorensen, M. A., Kurland, C. G., and Pedersen, S. (1989). Codon usage determines translation rate in Escherichia coli. J. Mol. Biol. 207, 365–377

    Article  PubMed  CAS  Google Scholar 

  • Sugiura, M., and Wakasugi, T. (1989). Compilation and comparison of transfer RNA genes from tobacco chloroplasts. Critical Rev. Plant Sci. 8, 89–101

    Article  CAS  Google Scholar 

  • Weber, F., Dietrich, A., Weil, J.H. and Maréchal-Drouard L. (1990) A potato mitochondrial isoleucine tRNA is coded for by a mitochondrial gene possessing a methionine anticodon. Nucleic Acids Res., in press

    Google Scholar 

  • Yamaguchi-Shinozaki, K., Shinozaki, K., and Sugiura, M. (1987). Processing of precursor tRNAs in a chloroplast lysate. FEBS Lett. 215, 132–136

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maréchal-Drouard, L., Guillemaut, P., Pfitzingzer, H., Weil, J.H. (1991). Chloroplast tRNAs and tRNA genes: structure and function. In: Mache, R., Stutz, E., Subramanian, A.R. (eds) The Translational Apparatus of Photosynthetic Organelles. NATO ASI Series, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75145-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75145-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75147-9

  • Online ISBN: 978-3-642-75145-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics