Skip to main content

Translational Feedback Control in E.Coli: The Role of tRNAThr and tRNAThr-Like Structures in the Operator of the Gene for Threonyl-tRNA Synthetase

  • Conference paper
Post-Transcriptional Control of Gene Expression

Part of the book series: NATO ASI Series ((ASIH,volume 49))

Abstract

In prokaryotes, protein-mediated translational control often takes the form of a negative feedback (Gold, 1988; Lindahl et al., 1986). The translational repressor, as proven in some examples, interacts with a regulatory region of its own mRNA, affecting ribosome binding and thus translation. In some cases in bacteriophage and E.coli, a particular feedback was shown to belong to a more general regulatory system. For instance, a particular feedback due to a specific ribosomal regulatory protein is modulated by the cellular concentration of the ribosomal RNA (rRNA) to which it binds (Nomura et al., 1984). If the cellular rRNA concentration increases, the specific regulatory protein binds to the excess of rRNA and not to its own mRNA whose translation is increased. This mRNA-rRNA competition permits the ribosomal protein synthesis to be adapted to the cellular rRNA concentration. As suggested in several cases, the binding site of the ribosomal regulatory protein on both its ligands (mRNA and rRNA) could share some similarity. This hypothesis has been called molecular mimicry (Campbell et al, 1983) and implies that there is a common site on the regulatory protein that recognises both nucleic acid ligands. This is a simple strategy for adding a regulatory role to a protein involved in nucleic acid binding without having the necessity for a separate regulatory domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames B N, Tsang T H, Buck M, Christman M (1983) Proc. Natl. Acad. Sci. USA 80: 5240–5242.

    Google Scholar 

  • Butler J S, Springer M, Dondon J, Grunberg-Manago M (1986) Posttranscriptional autoregulation of Escherichia coli threonyl-tRNA synthetase expression in vivo. J.Bacteriol. 165: 198–203

    PubMed  CAS  Google Scholar 

  • Campbell K Mf Stormo G D, Gold L (1983) Protein-mediated translational repression; In: J. Beckwith, J. Davies and J. Gallant (eds) Gene function in prokaryotes. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.-Y., p 185–210

    Google Scholar 

  • Draper D E (1987) Translational regulation of ribosomal proteins in E.coli; In: J. Man (eds) Translational regulation of gene expression. Plenum publishing corporation, New-York, p 1–25

    Google Scholar 

  • Gardner J F (1979) Regulation of threonine operon: tandem threonine and isoleucine codons in the control region and translational control of transcription termination. Proc. Natl. Acad. Sci. USA 76: 1706–1710

    Article  PubMed  CAS  Google Scholar 

  • Gold L (1988) Postranscriptional regulatory mechanisms in Escherichia coli. Ann. Rev. Biochem. 57: 199–233

    Article  PubMed  CAS  Google Scholar 

  • Hartz D, McPheeters D S, Traut R, Gold L (1988) Extension inhibition analysis of translation initiation complexes; In: H. F. Noller and K. Moldave (eds) Methods in Enzymology. Academic Pres, New-York, p 419–425

    Google Scholar 

  • Komine Y, Adachi T, Inokuchi H, Ozeki H (1990) Genomic organisation and physical mapping of the Transfer RNA genes in E.coli. Submitted.

    Google Scholar 

  • Lestienne P, Plumbridge J A, Grunberg-Manago M, Blanquet S (1984) Autogenous repression of E.coli threonyl-tRNA synthetase expression in vitro. J. Biol. Chem. 259: 5232–5237

    Google Scholar 

  • Lindahl L, Zengel J M (1986) Ribosomal genes in Escherichia coli. Ann. Rev. Genet. 20: 297–326

    Google Scholar 

  • McClain W H, Nicholas Jr H B (1987) Differences between transfer RNA molecules. J.Molec.Biol. 194: 635–642

    Article  PubMed  CAS  Google Scholar 

  • McPheeters D S, Stormo G D, Gold L (1988) Autogenous regulatory site on the bacteriophage T4 gene 32 messenger RNA. J.Molec.Biol. 201: 517–535

    Article  PubMed  CAS  Google Scholar 

  • Moine H, Romby P, Springer M, Grunberg-Manago M, Ebel J P, Ehresmann C, Ehresmann B (1988) Messenger RNA structure and gene regulation at the translational level in Esherichia coli: the case of threonine:tRNAThr ligase. Proc. Natl. Acad. Sci. USA 85: 7892–7896

    Google Scholar 

  • Moine H, Romby P, Springer M, Grunberg-Manago M, Ebel J P, Ehresmann B, Ehresmann C (1990) E.coli threonyl-tRNA synthetase and tRNAThr modulate the binding of the ribosome to the translation initiation site of the thrS mRNA. Submitted

    Google Scholar 

  • Nomura M, Gourse R, Baughman G (1984) Regulation of the synthesis of ribosomes and ribosomal components. Ann. Rev. Biochem. 53: 73–117

    Google Scholar 

  • Schulman L H, Pelka H (1990) An anticodon change switches the identity of E.coli tRNAMetm from methionine to threonine. Nucleic Acids Res. 18: 285–289

    Article  PubMed  CAS  Google Scholar 

  • Springer M, Graffe M, Butler J S, Grunberg-Manago M (1986) Genetic definition of the translational operator of the threonine tRNA ligase gene in Escherichia coli. Proc. Natl. Acad. Sci. USA 83: 4384–4388

    Google Scholar 

  • Springer M, Graffe M, Dondon J, Grunberg-Manago M (1989) tRNA-like structures and gene regulation at the translational level: a case of molecular mimicry in E.coli. EMBO J. 8: 2417–2424

    Google Scholar 

  • Springer M, Mayaux J F, Fayat G, Plumbridge J A, Graffe M, Blanquet S, Grunberg-Manago M (1985) Attenuation control of the Escherichia coli phenylalanyl-tRNA synthetase operon. J.Molec.Biol. 181: 467–478.

    Article  PubMed  CAS  Google Scholar 

  • Springer M, Plumbridge J A, Butler J S, Graffe M, Dondon J, Mayaux J F, Fayat G, Lestienne P, Blanquet S, Grunberg-Manago M (1985) Autogenous control of Escherichia coli threonyl-tRNA synthetase expression in vivo. J. Molec. Biol. 185: 93–104

    Google Scholar 

  • Theobald A, Springer M, Grunberg-Manago M, Ebel J P, Gi6g£ R (1988) Tertiary structure of E.coli tRNAThr3 in solution and interaction of this tRNA with the cognate threonyl- tRNA synthetase. Eur. J. Biochem. 175: 511–524

    Google Scholar 

  • Winter R B, Morrissey L, Gauss P, Gold L, Hsu T, Karam J (1987) Bacteriophage T4 regA proteins binds to mRNAs and prevents translation initiation. Proc. Natl. Acad. Sci. USA 84: 7822–7826

    Google Scholar 

  • Zurawsky G, Brown D, Killingly D, Yanofsky C (1978) Nucleotide sequence of the leader region of the phenylalanine operon of E.coli. Proc. Natl. Acad. Sci. USA 75: 4271–4275

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Springer, M. et al. (1990). Translational Feedback Control in E.Coli: The Role of tRNAThr and tRNAThr-Like Structures in the Operator of the Gene for Threonyl-tRNA Synthetase. In: McCarthy, J.E.G., Tuite, M.F. (eds) Post-Transcriptional Control of Gene Expression. NATO ASI Series, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75139-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75139-4_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75141-7

  • Online ISBN: 978-3-642-75139-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics