Control of Translational Initiation by mRNA Secondary Structure: A Quantitative Analysis

  • Maarten H. de Smit
  • Jan van Duin
Part of the NATO ASI Series book series (volume 49)


There is good evidence that mRNA secondary structure is one of the main factors determining the efficiency of translations initiation in prokaryotes (reviewed by Stormo, 1986; Gold, 1988; de Smit & van Duin, 1990). For example, Hall et al. (1982) found that mutations stabilizing a potential hairpin structure in the ribosome binding site of the lamB gene inhibited its expression and this inhibition could be relieved by second-site destabilizing mutations. They further suggested that the level of expression in the different mutants was related to the relative stability of the helix. Similarly, others showed the expression of heterologous genes in E. coli to be related to the stability of defined secondary structures involving the ribosome binding sites (Buell et al., 1985; Tessier et al., 1984; Spanjaard et al., 1989).


Secondary Structure Translational Initiation Ribosome Binding Site mRNA Secondary Structure Expression Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angenent GC, Posthumus E, Bol JF, (1989) Biological activity of transcripts synthesized in vitro from full-length and mutated DNA copies of tobacco rattle virus RNA2. Virology 173: 68–76PubMedCrossRefGoogle Scholar
  2. Berkhout B, van der Laken, CJ, van Knippenberg, PH, (1986) Formylmethionyl-tRNA binding to 30S ribosomes programmed with homopolynucleotides and the effect of translational initiation factor 3. Biochim Biophys Acta 866: 144–153PubMedGoogle Scholar
  3. Buell G, Schultz M-F, Selzer G, Chollet A, Mowa NR, Semon D, Escanez S, Kawashima E, (1985) Optimizing the expression in E. coli of a synthetic gene encoding somatomedin-C ( IGF-I ). Nucleic Acids Res 13: 1923–1938PubMedCrossRefGoogle Scholar
  4. Calogero RA, Pon CL, Canonaco MA, Gualerzi CO, (1988) Selection of the mRNA translation initiation region by Escherichia coli ribosomes. Proc Natl Acad Sci USA 85: 6427–6431PubMedCrossRefGoogle Scholar
  5. Cech TR, Tanner NK, Tinoco I, Weir BR, Zuker M, Perlman PS, (1983) Secondary structure of the Tetrahymena ribosomal RNA intervening sequence: Structural homology with fungal mitochondrial intervening sequences. Proc Natl Acad Sci USA 80: 3903–3907PubMedCrossRefGoogle Scholar
  6. de Smit MH, van Duin J, (1990) Control of prokaryotic translational initiation by mRNA secondary structure. Progr. Nucleic Acid Res Mol Biol 38: 1–35CrossRefGoogle Scholar
  7. Draper DE, (1987) Translational regulation of ribosomal proteins in Escherichia coli. In: Man J, (ed) Translational regulation of gene expression. Plenum New York (pp. 1–23 )Google Scholar
  8. Dreyfus M, (1988) What constitutes the signal for the initiation of protein synthesis on Escherichia coli mRNAs? J Mol Biol 204: 79–94Google Scholar
  9. Ellis S, Conway TW, (1984) Initial velocity kinetic analysis of 30S initiation complex formation in an in vitro translation system derived from Escherichia coli. J Biol Chem 259: 7607–7614PubMedGoogle Scholar
  10. Forchhammer J, Lindahl J, (1971) Growth rate of polypeptide chains as a function of theGoogle Scholar
  11. cell growth rate in a mutant of Escherichia coli 15. J Mol Biol 55: 563–568Google Scholar
  12. Freier SM, Kierzek R, Jaeger JA, Sugimoto N, Caruthers MH, Neilson T, Turner DH, (1986) Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci USA 83: 9373–9377PubMedCrossRefGoogle Scholar
  13. Ganoza MC, Kofoid EC, Marlière P, Louis BG, (1987) Potential secondary structure at translation-initiation sites. Nucleic Acids Res. 15: 345–360PubMedCrossRefGoogle Scholar
  14. Gold L, (1988) Posttranscriptional regulatory mechanisms in Escherichia coli. Ann Rev Biochem 57: 199–233PubMedCrossRefGoogle Scholar
  15. Gouy M, Grantham R, (1980) Polypeptide elongation and tRNA cycling in Escherichia coli: A dynamic approach. FEBS Lett 115: 151–155PubMedCrossRefGoogle Scholar
  16. Gualerzi C, Risuleo G, Pon CL, (1977) Initial rate kinetic analysis of the mechanism of initiation complex formation and the role of initiation factor IF-3. Biochemistry 16:1684– 1689Google Scholar
  17. Gualerzi CO, Calogero RA, Canonaco MA, Brombach M, Pon CL, (1988) Selection of mRNA by ribosomes during prokaryotic translational initiation. In: Tuite MF, Picard M, Bolotin-Fukuhara M, (eds) Genetics of translation. Springer Heidelberg (pp. 317–330 )Google Scholar
  18. Hall MN, Gabay J, Débarbouillé M, Schwartz M, (1982) A role for mRNA secondary structure in the control of translation initiation. Nature 295: 616–618PubMedCrossRefGoogle Scholar
  19. Iserentant D, Fiers W, (1980) Secondary structure of mRNA and efficiency of translation initiation. Gene 9: 1–12PubMedCrossRefGoogle Scholar
  20. Looman AC, Bodlaender J, Comstock LJ, Eaton D, Jhurani P, de Boer HA, van Knippenberg PH, (1987) Influence of the codon following the AUG initiation codon on the expression of a modified lacZ gene in Escherichia coli. EMBO J 6: 2489–2492PubMedGoogle Scholar
  21. Munson LM, Stormo GD, Niece RL, Reznikoff WS, (1984) lacZ Translation initiation mutations. J Mol Biol 177: 663–683Google Scholar
  22. Precup J, Parker J, (1987) Missense misreading of asparagine codons as a function of codon identity and context. J Biol Chem 262: 11351–11355PubMedGoogle Scholar
  23. Queen C, Rosenberg M, (1981) Differential translation efficiency explains discoordinate expression of the galactose operon. Cell 25: 241–249PubMedCrossRefGoogle Scholar
  24. Rosa MD, (1981) Structure analysis of three T7 late mRNA ribosome binding sites. J Mol Biol 147: 55–71PubMedCrossRefGoogle Scholar
  25. Salser W, (1977) Globin mRNA sequences: Analysis of base pairing and evolutionary implications. Cold Spring Harbor Symp Quant Biol 42: 985–1002Google Scholar
  26. Scherer GFE, Walkinshaw MD, Arnott S, Morré DJ, (1980) The ribosome binding sites recognized by E. coli ribosomes have regions with signal character in both the leader and protein coding segments. Nucleic Acids Res 8: 3895–3907Google Scholar
  27. Schmidt BF, Berkhout B, Overbeek GP, van Strien A, van Duin J, (1987) Determination of the RNA secondary structure that regulates lysis gene expression in bacteriophage MS2. J Mol Biol 195: 505–516PubMedCrossRefGoogle Scholar
  28. Selker E, Yanofsky C, (1979) Nucleotide sequence of the trpC-trpB intercistronic region from Salmonella typhimurium. J Mol Biol 130: 135–143PubMedCrossRefGoogle Scholar
  29. Skripkin EA, Adhin MR, de Smit MH, van Duin J, (1990) Secondary structure of the central region of bacteriophage MS2 RNA. J Mol Biol 211: 447–463Google Scholar
  30. Spanjaard RA, van Dijk MCM, Turion AJ, van Duin J, (1989) Expression of the rat interferon-a1 gene in Escherichia coli controlled by the secondary structure of the translation-initiation region. Gene 80: 345–351PubMedCrossRefGoogle Scholar
  31. Stormo GD, (1986) Translation initiation. In: Reznikoff W, Gold L, (eds) Maximizing gene expression. Butterworths Boston (pp. 195–224 )Google Scholar
  32. Stormo GD, Schneider TD, Gold LM, (1982) Characterization of translational initiation sites in E. coli. Nucleic Acids Res 10: 2971–2996PubMedCrossRefGoogle Scholar
  33. Subramanian A-R, (1983) Structure and functions of ribosomal protein S1. Progr Nucleic Acid Res Mol Biol 28: 101–142CrossRefGoogle Scholar
  34. Tessier L-H, Sondermeyer P, Faure T, Dreyer D, Benavente A, Villeval D, Courtney M, Lecocq J-P, (1984) The influence of mRNA primary and secondary structure on human IFN-ygene expression in E. coli. Nucleic Acids Res 12: 7663–7675PubMedCrossRefGoogle Scholar
  35. Tinoco I, Borer PN, Dengler B, Levine MD, Uhlenbeck OC, Crothers DM, Gralla J, (1973) Improved estimation of secondary structure in ribonucleic acids. Nature New Biol 246: 40–41PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Maarten H. de Smit
    • 1
  • Jan van Duin
    • 1
  1. 1.Department of Biochemistry Gorlaeus LaboratoriesUniversity of LeidenLeidenThe Netherlands

Personalised recommendations