Chemosensors with Pattern Recognition

  • R. Müller
Conference paper
Part of the NATO ASI Series book series (volume 39)


The idea of using the information present in the combination of sensorsignals for the identification of substances rather than to rely on the selectivity of single sensor elements /1, 2, 3, 4/ has lead to the application of the methods of pattern recognition (PARC) to chemo sensor signals. These methods are described e.g. in /5/. While the methods of PARC levels 1 and 2 serve the purpose of identification only, the methods of level 3 and 4 yield the identification and concentration at the same time. The latter two methods however are applicable only if the superposition law holds for the sensorsignals, which is rarely the case with chemosensors. Frequently however it is possible to find an artifical superposition plane by transformation of the sensor — signals /6/.


Pattern Recognition Sensor Array Sensor Element Ideal Selectivity Olfactory Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hirschfeld T.: Microfabrication and Sensor Technology International Conference on solid state sensors and actuators. 1985. Digest of technical papers: New York, IEEE Press 1985Google Scholar
  2. 2.
    Stetter, J.R.; Zaromb, S.: Theoretical basis for identification and measurement of air contaminants using an array of sensors having partly overlapping selectivities. Sensors and Actuators 6 (1984), 225–243CrossRefGoogle Scholar
  3. 3.
    Ikegami, A.; Kaneyasu, M.: Olfactory Detection Using Integrated Sensor. Proc. Int. conf. on Solid-State Sensors and Actuators (1985). New Yor: IEEE Press 1985, 136–139Google Scholar
  4. 4.
    Müller, R.; Lange, E.: Multidimensional sensors for gas analysis. Proc. Int. Conf. on Solid State Sensors and Actuators, 1985. New York: IEEE Press 1985, S. 81–84Google Scholar
  5. 5.
    Sharaf, M.A.: Illman, D.L.; Kowalski, B.R.: Chemometrics. New York: John Wiley & Sons, 1986.Google Scholar
  6. 6.
    Hierold, Chr.; Müller, R.: Quantitative Analysis of Gas Mixtures with Non-Selective Gas Sensors.Google Scholar
  7. 7.
    Homer, G.; Lange, E.; Albertshofer, W.; Nuscheler, F.: MOS-Gassensoren mit Zeolith-Filterschichten, Sensoren — Technologie und Anwendung. NTGFachberichte 93, Bad Nauheim, 1986. 108–115.Google Scholar
  8. 8.
    Lundström, I.: Hydrogen sensitive MOS-structures, Part I: Principles and Applications. Sensors and Actuators 1, 1981.Google Scholar
  9. 9.
    Müller, R., Lange, E.: Multidimensional Sensor for Gas Analysis. Sensors and Actuators, 9, 1986. 39–48.CrossRefGoogle Scholar
  10. 10.
    Müller, R., Homer, G.: Chemosensors with Pattern Recognition. Siemens Forsch.-u. Entwickl.-Ber. Bd. 15 (1986) Nr. 3, Springer-Verlag 1986.Google Scholar
  11. 11.
    Homer, G, Albertshofer, W.: Sensorarrays mit nicht-selektiven Chemosensoren - Analyse von Gasgemischen und Verbesserung der Selektivität. AEU Band 42, 1988 Heft 2.Google Scholar
  12. 12.
    Gall, M., Müller, R.: Investigation of Gasmixtures with different MOS-Gassensors with regard to Pattern Recognition.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • R. Müller
    • 1
  1. 1.Techn. Universität MünchenGermany

Personalised recommendations