Skip to main content

Optics of Marine Particles and Marine Optics

  • Chapter
Particle Analysis in Oceanography

Part of the book series: NATO ASI Series ((ASIG,volume 27))

Abstract

Optical oceanography was initially developed as a specific, somewhat isolated part of physical oceanography. More or less independently, a few marine biologists and ecologists were concerned with optical data and measurements, particularly concerning the study of oceanic primary production (Steele and Menzel, 1962) and the estimation of the part of radiant energy that can be absorbed within the algal compartment compared to that absorbed by detritus (Yentsch, 1962; 1963; Riley, 1965). A paper by Yentsch and Yentsch (1984) Emergence of optical instrumentation for measuring biological properties, described the new panorama resulting from the introduction of powerful optical techniques in the 1980s. The techniques which appear most promising paradoxically address the biological problems via opposite scales: the microscopic (cell by cell) scale, typical of flow cytometry, and the global scale, typical of satellite borne ocean color sensor. The interest of biologists with regard to optics has been stimulated by the capacity of these new tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aas E (1981) The refractive index of phytoplankton. Inst Rep Ser, Univ Oslo, 46:61 p

    Google Scholar 

  • Aas E (1984) Influence of shape and structure on light scattering by marine particles. Inst Resp Ser Univ Oslo 53:112 p

    Google Scholar 

  • Ackelson SG, Spinrad RW (1988) Size and refractive index of individual marine particulates: a flow cytometric approach Appl Opt 27:1270–1277

    Article  Google Scholar 

  • Ahn YH, (1990) Propriétés optiques des particules biologiques et minérales présentes dans l’océan. Thèse, Université Pierre et Marie Curie, pp 208

    Google Scholar 

  • Asano S, Sato M (1980) Light scattering by randomly oriented spheroidal particles. Appl Opt 19:962–974

    Article  Google Scholar 

  • Azam F, Fenchel T, Field GJ, Gray JS, Meyer-Reil A, Thingstan F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–267

    Article  Google Scholar 

  • Bader H (1970) The hyperbolic distribution of particle sizes. J Geophys Res 75:2822–2830

    Article  Google Scholar 

  • Baker KS, Smith RC (1982) Bio-optical classification and model of natural waters II, Limnol Oceanogr 27:500–509

    Article  Google Scholar 

  • Beers JR, Reid FMH, Stewart GL (1982) Seasonal abundance of the microplankton population in the North Pacific central gyre. Deep-Sea Res 29:227–245

    Article  Google Scholar 

  • Bidigare RR, Morrow JH, Kiefer DA (1989) Derivative analysis of spectral absorption by photosynthetic pigments in the western Sargasso Sea. J Mar Res 47:323–341

    Article  Google Scholar 

  • Blank M, Leinen M, Prospero JM (1985) Major Asian aeolian inputs indicated by the mineralogy of aerosols and sediments in the Western North Pacific. Nature 314:83–86

    Article  Google Scholar 

  • Brøsheim KY, Bratbak G, Heldall M (1990) Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy. Appl Environ Microbiol 56:352–356

    Google Scholar 

  • Bratbak G, Heldall M, Norland S, Thingstad TF (1990) Viruses as partners in spring bloom microbial trophodynamics. Appl Environ Microbiol 56:1400–1405

    Google Scholar 

  • Bricaud A (1989) Propriétés optiques du phytoplancton. Etude théorique et expérimentale. Application à l’interprétation de la couleur de la mer. Thèse de Doctorat d’Etat, Univ Pierre et Marie Curie, pp 163

    Google Scholar 

  • Bricaud A, Morel A (1986) Light attenuation and scattering by phytoplanktonic cells; a theoretical modeling. Appl Opt 25:571–580

    Article  Google Scholar 

  • Bricaud A, Stramski D (1990) Spectral absorption coefficients of living phytoplankton and non algal biogenous matter: a comparison between the Peru upwelling area and Sargasso Sea. Limnol Oceanogr 35:562–582

    Article  Google Scholar 

  • Bricaud A, Morel A, Prieur L. (1981) Absorption by dissolved organic matter of the sea (yellow substance) in the U.V. and visible domains. Limnol Oceanogr 26:43–53

    Article  Google Scholar 

  • Bricaud A, Morel A, Prieur L (1983) Optical efficiency factors of some phytoplankters, Limnol Oceanogr 28:816–832

    Article  Google Scholar 

  • Bricaud A, Bedhomme AL, Morel A (1988) Optical properties of diverse phytoplanktonic species: Experimental results and theoretical interpretation. J plankton Res 10:851–873

    Article  Google Scholar 

  • Brown OB, Gordon HR (1973) Two component Mie scattering models of Sargasso Sea particles. Appl Opt 12:2461–2471

    Article  Google Scholar 

  • Brun-Cottan JC (1971) Etude de la granulométrie des particules marines. Mesures effectuées avec un compteur Coulter. Cah Oceanogr 23:193–205

    Google Scholar 

  • Butler WL (1962) Absorption of light by turbid materials. J Opt Soc Am 52:292–299

    Article  Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Welschmeyer NA (1988) A novel free-living prochlorophyte occurs at high cell concentration in the oceanic euphotic zone. Nature 334:340–343

    Article  Google Scholar 

  • Cole JJ, Findlay S, Pace ML (1988) Bacterial production in fresh and saltwater ecosystems; a cross system overview. Mar Ecol Prog Ser 43:1–10

    Article  Google Scholar 

  • Dubelaar GJB, Visser JWM, Donze M (1987) Anomalous behaviour of forward and perpendicular light scattering of a cyanobacterium owing to intracellular gas vacuoles. Cytometry 8:405–412

    Article  Google Scholar 

  • Geider RJ (1988) Abundance of autotrophic and heterotrophic nanoplankton and size distribution of microbial biomass in the Southwestern North Sea in October 1986. J Exp Biol Ecol 123:127–145

    Article  Google Scholar 

  • Gordon Jr DC (1970) A microscopic study of organic particles in the North Atlantic Ocean. Deep-Sea Res 17:233–243

    Google Scholar 

  • Gordon HR (1987) Bio-optical model describing the distribution of irradiance at the sea surface resulting from a point source embedded in the ocean. Appl Opt 26:4133–4148

    Article  Google Scholar 

  • Gordon H R (1989) Dependence of the diffuse reflectance of natural waters on the sun angle. Limnol Oceanogr 34:1484–1489

    Article  Google Scholar 

  • Gordon HR, Morel A (1983) Remote assessment of ocean color for interpretation of satellite visible imagery, A review, in Lecture Notes on Coastal and Estuarine Studies, edited by RT Barber, CNK Mooers, MJ Bowman, and B Zeitzchel, 114 pp., Springer-Verlag, New-York

    Google Scholar 

  • Gordon HR, Others (1988) A semi-analytical radiance model of ocean color. J Geophys Res 93:10909–10924

    Article  Google Scholar 

  • Iturriaga R, Mitchell BG, Kiefer DA (1988) Microphotometric analysis of individual particle spectra. Limnol Oceanogr 33:128–135

    Article  Google Scholar 

  • Junge CE (1963) Air chemistry and Radioactivity, Academic Press, NY, pp 382

    Google Scholar 

  • Kalle K (1938) Zum Problem der Meereswasser Farbe. Ann Hydrol Mar Mitt 66:1–13

    Google Scholar 

  • Kerker M (1963) Electromagnetic scattering. Proceedings of the Interdisciplinary Conference, edited by M Kerker. Pergamon Press, pp 592

    Google Scholar 

  • Kiefer DA, Soohoo JB (1982) Spectral absorption by marine particles of coastal waters of Baya California. Limnol Oceanogr 27:492–499

    Article  Google Scholar 

  • Kirk JTO (1975a) A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. I. General treatment of suspensions of living cells, New Phytol 75:11–20

    Article  Google Scholar 

  • Kirk JTO (1975b) A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. II. Spherical cells. New Phytol 75:21–36

    Article  Google Scholar 

  • Kirk JTO (1981) Monte-Carlo study of the nature of the underwater light field in, and the relationships between optical properties of, turbid yellow waters. Aust J Mar Freshwater Res 32:533–539

    Article  Google Scholar 

  • Kishino M, Takahashi M, Okami N, Ichimura S (1985) Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bull Mar Sci 37:634–642

    Google Scholar 

  • Koike I, Hara S, Terauchi K, Kogure K (1990) Role of sub-micrometer particles in the ocean. Nature 345:242–244

    Article  Google Scholar 

  • Mitchell BG (1987) Ecological implications of variability in marine particulate absorption and fluorescence excitation spectra. Ph D thesis, Univ Southern California 196 p

    Google Scholar 

  • Morel A (1973) Diffusion de la lumière par les eaux de mer, résultats expérimentaux et approche théorique, in Optics of the Sea, AGARD Lect. Ser, vol 61, pp 3.1.01–3.1.76, Advisory Group for Aeronautical Research and Development, NATO, Brussels

    Google Scholar 

  • Morel A (1974) Optical properties of pure water and pure sea water, in Optical Aspects of Oceanography, edited by NG Jerlov and E Steemann Nielsen, pp 1–24, Academic, San Diego, Calif

    Google Scholar 

  • Morel A (1987) Chlorophyll-specific scattering coefficient of phytoplankton, a simplified theoretical approach. Deep-Sea Res 34:1093–1105

    Article  Google Scholar 

  • Morel A (1988) Optical modelling of the upper ocean in relation to its biogenous matter content (case 1 waters). J Geophys Res 93:10749–10768

    Article  Google Scholar 

  • Morel A (1991) Light and marine photosynthesis: A spectral model with geochemical and climatological implications. Prog Oceanogr 26:263–306

    Article  Google Scholar 

  • Morel A, Ahn YH (1990) Optical efficiency factors of free living marine bacteria: influence of bacterioplankton upon the optical properties and particulate organic carbon in oceanic waters. J Mars Res 48:145–175

    Article  Google Scholar 

  • Morel A, Ahn YH (1991) Optics of heterotrophic nanoflagellates and ciliates: their optical role in open ocean waters compared to those of bacteria and algal cells. J Mar Res in press

    Google Scholar 

  • Morel A, Bricaud A (1981a) Theoretical results concerning light absorption in a discrete medium and application to specific absorption of phytoplankton, Deep Sea Res Part A, 28, 1375–131, 1981

    Article  Google Scholar 

  • Morel A, Bricaud A (1981b) Theoretical results concerning the optics of phytoplankton, with special reference to remote sensing applications. In: Oceanography from Space, J F R Gower edit, Marine Science Series, Vol. 13, Plenum Press, NY, 313–327

    Google Scholar 

  • Morel A, Bricaud A (1986) Inherent optical properties of algal cells including picoplankton: theoretical and experimental results, in Photosynthetic Picoplankton, T Platt and WKW Li, eds, Can Bull Fish Aquat Sci 214:521–559

    Google Scholar 

  • Morel A, Prieur L (1977) Analysis of variations in ocean color. Limnol Oceanogr 22:709–722

    Article  Google Scholar 

  • Morrow JH, Chamberlin WS, Kiefer DA (1989) A two-component description of spectral absorption by marine particles. Limnol Oceanogr 34:1500–1509

    Article  Google Scholar 

  • Norland S, Heldal M, Tumyr O (1987) On the relation between dry matter and volume of bacteria. Microb Ecol 13:95–101

    Article  Google Scholar 

  • Perry MJ, Porter SM (1989) Determination of the cross-section absorption coefficient of individual phytoplankton cells by analytical flow cytometry. Limnol Oceanogr 34:1727–1738

    Article  Google Scholar 

  • Petzold TJ (1972) Volume scattering functions for selected natural waters. Scripps Inst Oceanogr, Visibility Lab, SIO Ref 72–78

    Google Scholar 

  • Preisendorfer RW (1961) Application of radiative transfer theory to light measurements in the sea, Monogr. 10, pp. 11–30, Int Union Geod Geophys, Paris

    Google Scholar 

  • Prieur L, Sathyendranath S (1981) An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter and other particulate materials, Limnol Oceanogr 26:671–689

    Article  Google Scholar 

  • Rabinowitch E, Govindjee E (1969) Photosynthesis. John Wiley and Sons Inc., pp. 273

    Google Scholar 

  • Rassoulzadegan F, Sheldon RW (1986) Predator-prey interactions of nanozooplankton and bacteria in an oligotrophic marine environment. Limnol Oceanogr 31:1010–1021

    Article  Google Scholar 

  • Riley GA (1965) A mathematical model of regional variations in plankton. Limnol Oceanogr 10: R 202–R 215

    Article  Google Scholar 

  • Schuerman DW (1980) Light scattering by irregular shaped particles. DW Schuerman Edit, Plenum, pp 334

    Google Scholar 

  • Sheldon RW, Parsons TR (1967) A continous size spectrum for particulate matter in the Sea. J Fish Res Bd Canada 24:909–915

    Article  Google Scholar 

  • Sheldon RW, Prakash A, Sutcliffe WH Jr (1972) The size distribution of particles in the ocean. Limnol Oceanogr 17:327–340

    Article  Google Scholar 

  • Sherr ED, Sherr BF, Fallon RD, Newell SY (1986) Small, aloricate ciliates as a major component of heterotrophic nanoplankton. Limnol Oceanogr 31:177–183

    Article  Google Scholar 

  • Sieburth JMcN (1983) Microbiological and organic chemical process in the surface and mixed layers. In: Air-Sea exchange of gazes and particles; PS LISS and WGN SLINN Edit D Reidel Publishing Company, 121–172

    Google Scholar 

  • Simon M, Azam F (1989) Protein content and protein synthesis rates of planktonic marine bacteria. Mar Ecol Prog Ser 51:201–213

    Article  Google Scholar 

  • Smith RC, Baker KS (1978) The bio-optical state of ocean waters and remote sensing. Limnol Oceanogr 23:247–259

    Article  Google Scholar 

  • Smith RC, Baker KS (1981) Optical properties of the clearest natural waters, Appl Opt 20:177–184

    Article  Google Scholar 

  • Soohoo JB, Kiefer DA (1982) Vertical distribution of phaeopigments. 1. A simple grazing and photooxidative scheme for small particles. 2. Rates of production and kinetics of photoxidation. Deep-Sea Res 29:1539–1551; 1553–1563

    Google Scholar 

  • Sosik HM (1988) Analysis of chlorophyll fluorescence in marine phytoplankton: Interpretation of flow cytometric signals. MS thesis, Mass Inst Technol, 88 p

    Google Scholar 

  • Sosik HM, Chisholm SW, Olson RJ (1989) Chlorophyll fluorescence from single cells: Interpretation of flow cytometric signals. Limnol Oceanogr 34:1749–1761

    Article  Google Scholar 

  • Spinard RW, Brown FJ (1986) Relative real refractive index of marine microorganisms: a technique for flow cytometric estimation. Appl Opt 25:1930–1934

    Article  Google Scholar 

  • Steele JH, Menzel DW (1962) Conditions for maximum primary production in the mixed layer. Deep-Sea Res 9:39–49

    Google Scholar 

  • Stramski D, Morel A (1989) Optical properties of photosynthetic picoplankton in different physiological states as affected by growth irradiance. Deep-Sea Res 27:245–266

    Google Scholar 

  • Stramski D, Kiefer DA (1990) Optical properties of marine bacteria. Proc SPIE, 1302, Ocean Optics 1302:250–268

    Google Scholar 

  • Stramski D, Morel A, Bricaud A (1988) Modeling the light attenuation and scattering by spherical phytoplankton cells: a retrieval of the bulk refractive index. Appl Opt 27:3954–3956

    Article  Google Scholar 

  • Tyler JE (Ed.) (1966) Report on the second meeting of the Joint Group of experts on photosynthetic radiant energy. UNESCO Tech Pap Mar Sci 2:1–11

    Google Scholar 

  • Vaulot D, Partensky F, Neveux J, Mantoura RFC, Llewellyn CA (1990) Winter presence of prochlorophytes in surface waters of the northwestern Mediterranean Sea. Limnol Oceanogr 35:1156–1164

    Article  Google Scholar 

  • Van De Hulst HC (1957) Light scattering by small particles. Wiley, NY, 470 pp

    Google Scholar 

  • Yentsch CS (1962) Measurements of visible light absorption by particulate matter in the ocean. Limnol Oceanogr 7:207–217

    Article  Google Scholar 

  • Yentsch CS (1963) Primary production. Oceanogr Mar Biol Ann Rev 1:157–175

    Google Scholar 

  • Yentsch CM, Yentsch CS (1984) Emergence of optical instrumentation for measuring biological properties. Oceanogr Mar Biol Ann Rev 22:55–98

    Google Scholar 

  • Zaneveld JRV, Roach DM, Pak H (1974). The determination of the index of refraction of particles suspended in the ocean. J Geophys Res 77:2677–2680

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morel, A. (1991). Optics of Marine Particles and Marine Optics. In: Demers, S. (eds) Particle Analysis in Oceanography. NATO ASI Series, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75121-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75121-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75123-3

  • Online ISBN: 978-3-642-75121-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics