Skip to main content

The Characteristics of Algae in Relation to their Vulnerability to Grazing Snails

  • Conference paper
Book cover Behavioural Mechanisms of Food Selection

Part of the book series: NATO ASI Series ((ASIG,volume 20))

Abstract

A large number of studies have shown that many marine invertebrates feed selectively, preferring some algae and shunning others. For example, the littorinid snails that abound on British shores are highly selective in their choice of food, but different species of Littorina rank the same food plants differently (Table 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnes J R, Gonor JJ (1973) The larval settling response of the lined chiton Tonicella lineata. Mar Biol 20: 259–264

    Google Scholar 

  • Bate-Smith E C (1973) Haemanalysis of tannins: The concept of relative astringency. Phytochemistry 12: 907–912.

    Article  CAS  Google Scholar 

  • Bertness M D, Yund P O, Brown A F (1983) Snail grazing and the abundance of algal crusts on a sheltered New England rocky beach J Exp Mar Biol Ecol 71: 147–164.

    Google Scholar 

  • Branch G (1975) Intraspecific competition in Patella cochlear Born J Anim Ecol 44: 263–282

    Google Scholar 

  • Brattsten L B (1979) Biochemical defence mechanisms in herbivores against plant allelochemicals. In Rosenthal G A, Janzen D H (eds) Herbivores. Their interactions with plant secondary metabolites Academic Press: 199–270

    Google Scholar 

  • Clokie J J P, Norton T A (1974) The effect of grazing on the algal vegetation of pebbles from the Firth of Clyde. Br Phycol J 9: 216

    Google Scholar 

  • Croll R P (1983) Gastropod chemoreception. Biol Rev 58: 293–319

    Article  Google Scholar 

  • Fralick R A, Turgeon K W, Mathieson A C, (1974) Destruction of kelp populations by Lacuna vincta ( Montagu ). Nautilus 88: 112–114

    Google Scholar 

  • Frings H, Frings C (1965) Chemosensory basis of food finding behaviour in Aplysia juliana (Mollusca Opistobranchia) Biol Bull 128: 211–217

    Google Scholar 

  • Geiselman J A, McConnell O J (1981) Polyphenols in the brown algae Fucus vesiculosus and Ascophyllum nodosum. Chemical defence against the marine herbivorous snail Littorina littorea J Chem Ecol 7: 1115–1133.

    Article  CAS  Google Scholar 

  • Gerwick W H, Fenical W (1981) Ichthyotoxic and cytotoxic metabolites from the brown alga Stypopodium zonale J Org Chem 46: 22–27.

    CAS  Google Scholar 

  • Goldstein J L, Swain T(1965) The inhibition of enzymes by tannins. Phytochemistry 4: 185–192.

    Google Scholar 

  • Hay M E, Fenical W (1988) Marine plant-herbivore interactions: the ecology of chemical defence Ann Rev Ecol Syst 19: 111–145.

    Google Scholar 

  • Hawkins S J, Watson D C, Hill A S, Harding S P, Kyriakides M A, Hutchinson S, Norton T A (1989) A comparison of feeding mechanisms in microphagous, herbivorous, intertidal prosobranchs in relation to resource partitioning. J Moll Stud 55: 151–165.

    Article  Google Scholar 

  • Kain J M, Norton T A (1989) Marine ecology. In Cole K M, Sheath R (eds) The Biology of Red Algae. Cambridge Univ. Press.

    Google Scholar 

  • Levin D A (1976) The chemical defences of plants to pathogens and herbivores. Ann Rev Ecol Syst 7: 121–159.

    Article  CAS  Google Scholar 

  • Littler M M (1976) Calcification and its role among the macroalgae. Micronesica 12: 27–41.

    Google Scholar 

  • Littler M M, Littler D S (1980). The evolution of thallus form an survival strategies in benthic marine macroalgae: field and laboratory tests of functional form model. Am. Nat. 116: 25–44.

    Google Scholar 

  • Littler M M, Littler D S (1981) Intertidal macrophyte communities from Pacific Baja California: relatively constant versus environmentally fluctuating systems. Mar Ecol Prog Ser 4: 145–158.

    Article  Google Scholar 

  • Littler M M, Littler D S, Taylor P R (1987) Animal-plant defense associations: effects on the distribution and abundance of tropical reef macrophytes. J Exp Mar Biol Ecol 105: 107–121.

    Article  Google Scholar 

  • Littler M M, Taylor P R, Littler D S (1986) Plant defense associations in the marine environment. Coral Reefs 5: 63–71.

    Article  Google Scholar 

  • Lubchenco J (1983) Littorina and Fucus: Effects of herbivores, substratum heterogeneity and plant escapes during succession. Ecology 64:1116–1123

    Google Scholar 

  • Miles P W (1969) Interaction of plant phenols and salivary phenolases in the relationship between plants and Hemiptera. Entomol Exp App 12: 736–744.

    Article  CAS  Google Scholar 

  • Morse A N C, Morse D E (1984) Recruitment and metamorphosis of Haliotis larvae induced by molecules uniquely available at the surfaces of crustose red algae. J Exp Mar Biol Ecol 75: 191–215.

    Article  CAS  Google Scholar 

  • Norris J N, Fenical W (1986) Chemical defense in tropical marine algae. In: Rutzler K, Macintyre I G (eds) Atlantic barrier reef ecosystem at Carrie Bow Cay, Belize. Smithsonian Contribs Mar Sci 12: 590–626.

    Google Scholar 

  • Norton T A (1971) An ecological study of the fauna inhabiting the sublittoral marine alga Saccorhiza polyschides (Lightf) Batt. Hydrobiologia 37: 215–231

    Article  Google Scholar 

  • Norton T A, Watson D C, Hawkins S J, Manley N L, Williams G A (1989) Scraping a living: a review of littorinid grazing Hydrobiologia.

    Google Scholar 

  • Padilla D K (1984) The importance of form: differences in competitive ability, resistance to consumers and environmental stress in an assemblage of coralline algae. J Exp Mar Biol Ecol 79: 105–127.

    Article  Google Scholar 

  • Padilla D K (1985) Structural resistance of algae to herbivores. Mar Biol 90: 103–109.

    Article  Google Scholar 

  • Ragan M A, Glombitza K W (1986) Phlorotannins, brown algal polyphenols. Progr Phycol Res 4: 129–241.

    CAS  Google Scholar 

  • Rumrill S S, Cameron R A (1983) Effects of gamma-aminobutyric acid on the settlement of larvae of the black chiton Katherina tunicata Mar Biol 72: 243–247.

    CAS  Google Scholar 

  • Sieburth J McN, Jensen A (1968) Studies on algal substances in the sea. I Gelbstoff (humic material) in terrestrial and marine waters. J Exp Mar Biol Ecol 2: 174–189.

    Google Scholar 

  • Sieburth J McN, Tootle, J L (1981) Seasonally of microbial fouling on Ascophyllum nodosum L (LeJol) Fucus vesiculosus L Polysiphonia lanosa (L) Tandy and Chondrus crispus Stackh J Phycol 17: 57–64.

    Google Scholar 

  • Stallard M O, Faulkener D J (1974a) Chemical constituents of the digestive gland of the sea hare Aplysia californica. I Importance of diet. Comp Biochem Physiol 49B: 25–35.

    Google Scholar 

  • Steneck R S (1982) A limpet - coralline alga association: adaptations and defenses between a selective herbivore and its prey. Ecology 63: 507–522.

    Article  Google Scholar 

  • Steneck R S, Watling L (1982) Feeding capabilities and limitation of herbivorous molluscs: A functional group approach. Mar Biol 68: 299–319.

    Google Scholar 

  • Swain T (1977) Secondary compounds as protective agents. Ann Rev Plant Physiol 28: 479–510.

    Article  CAS  Google Scholar 

  • Thomas M L H, F H Page (1983) Grazing by the gastropod Lacuna vincta in the lower intertidal area of Musquash Head, New Brunswick, Canada. J Mar Biol Ass U K 63: 725–736.

    Google Scholar 

  • Van Alstyne K L (1988) Herbivore grazing increases polyphenolic defenses in the intertidal brown alga Fucus distichus Ecology 69: 655–663.

    Google Scholar 

  • Van Dongen A (1956) The preference of Littorina obtusata for Fucaceae. Arch Neer Zool 11: 373–386.

    Article  Google Scholar 

  • Watson D C (1983) Seaweed palatability and selective grazing by littoral gastropods. PhD thesis University of Glasgow.

    Google Scholar 

  • Watson D C, Norton T A (1985a) Dietary preferences of the common periwinkle Littorina littorea (L) J Exp Mar Biol Ecol 88: 193–211.

    Google Scholar 

  • Watson D C, Norton T A (1985b) The physical characteristics of seaweed thalli as deterrents to littorine grazers. Bot Mar 28: 383–387.

    Article  Google Scholar 

  • Watson D C, Norton T A (1987) The habitat and feeding preferences of Littorina obtusata (L) and Littorina mariae Sacchi et Rastelli. J Exp Mar Biol Ecol 112: 61–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Norton, T.A., Manley, N.L. (1990). The Characteristics of Algae in Relation to their Vulnerability to Grazing Snails. In: Hughes, R.N. (eds) Behavioural Mechanisms of Food Selection. NATO ASI Series, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75118-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75118-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75120-2

  • Online ISBN: 978-3-642-75118-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics