Skip to main content

Foraging in the Context of Life-History : General Principles and Specific Models

  • Conference paper
Behavioural Mechanisms of Food Selection

Part of the book series: NATO ASI Series ((ASIG,volume 20))

Abstract

This chapter attempts to explore some aspects of the tension between general principles of foraging and the prediction of specific models. There are three main sections. The first describes some models based on maximizing the long-term rate of energetic gain. It is shown that the predictions of the standard model of prey choice do not necessarily hold in other contexts. The second section outlines a more general framework for modelling behaviour. It has the advantage of allowing decisions to depend on the animal’s state. It also puts foraging into the context of the animal’s life-history. The final section discusses the issue of simple versus complex models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnard CJ, Brown CAJ (1985) Risk-sensitive foraging in common shrews (Sorex araneus L). Behav Ecol Sociobiol 16: 161–164

    Article  Google Scholar 

  • Barnard CJ, Brown CAJ, Houston AI, McNamara JM (1985) Risk-sensitive foraging in common shrews: an interruption model and the effects of mean and variance in reward rate. Behav Ecol Sociobiol 18: 139–146

    Article  Google Scholar 

  • Brooke MdeL (1983) Wheatears, leatherjackets and a comment on central place foraging. Anim Behav 31: 304–305

    Article  Google Scholar 

  • Charnov EL (1976a) Optimal foraging: the marginal value theorem. Theor Pop Biol 9: 129–136

    Article  CAS  Google Scholar 

  • Charnov EL (1976b) Optimal foraging: attack strategy of a mantid. Am Nat 110: 141–151

    Article  Google Scholar 

  • Fantino E, Abarca N (1985) Choice, optimal foraging and the delay-reduction hypothesis. Behav Brain Sc 8: 315–330

    Article  Google Scholar 

  • Fritz RS, Morse DH (1985) Reproductive success and foraging of the crab spider Misamena vatia. Oecologia 65: 194–200

    Article  Google Scholar 

  • Houston AI (1985) Central-place foraging: some aspects of prey choice for multiple-prey loaders. Am Nat 125: 811–826

    Article  Google Scholar 

  • Houston AI, Clark CW, McNamara JM, Mangel M (1988) Dynamic models in behavioural and evolutionary ecology. Nature 332: 29–34

    Article  Google Scholar 

  • Houston AI, Davies NB (1985) The evolution of cooperation and life history in the dunnock Prunella modularis. In: Sibly RM, Smith RH (eds) Behavioural Ecology, Blackwell Scientific Publications, Oxford, p 471

    Google Scholar 

  • Houston AI, McNamara JM (1982) A sequential approach to risk-taking. Am Behav 30: 1260–1261

    Article  Google Scholar 

  • Houston AI, McNamara JM (1985a) A general theory of central-place foraging for single-prey loaders. Theor Pop Biol 28: 233–262

    Article  Google Scholar 

  • Houston AI, McNamara JM (1985b) The choice of two prey types that minimises the probability of starvation. Behav Ecol Sociobiol 17: 135–141

    Google Scholar 

  • Houston AI, McNamara JM (1988) A framework for the functional analysis of behavior. Behav Brain Sci 11: 117–154

    Article  Google Scholar 

  • Houston AI, Sumida BH, McNamara JM (1987) The maximization of overall reinforcement rate on concurrent chains. J Exp Anal Behav 48: 133–143

    Article  PubMed  CAS  Google Scholar 

  • Lessells CM, Stephens DW (1983) Central place foraging: single-prey loaders again. Anim Behav 31: 111–118

    Article  Google Scholar 

  • Lifjeld JT (1988) Prey choice and nestling hunger: an experiment with pied flycatchers, Ficedula hypoleuca. Anim Behav 36: 134–139

    Article  Google Scholar 

  • Lifjeld JT, Slagsvold T (1988) Effects of energy costs on the optimal diet: an experiment with Pied Flycatchers Ficedula hypoleuca feeding nestlings. Ornis Scand 19: 111–118

    Article  Google Scholar 

  • Lucas JR (1985) Time constraints and diet choice: different predictions from different constraints. Am Nat 126: 680–705

    Article  Google Scholar 

  • Lucas JR, Grafen A (1985) Partial prey consumption by ambush predators. J theor Biol 113: 455–473

    Article  Google Scholar 

  • Mangel M (1987) Oviposition site selection and clutch size in insects. J Math Biol 25: 1–22

    Google Scholar 

  • Mangel M, Clark CW (1986) Towards a unified foraging theory. Ecology 67: 1127–1138

    Article  Google Scholar 

  • Mangel M, Clark CW (1988) Dynamic modeling in behavioral ecology. Princeton University Press, Princeton, NJ

    Google Scholar 

  • McNair JN (1979) A generalized model of optimal diets. Theor Pop Biol 15: 159–170

    Article  Google Scholar 

  • McNamara JM (1984) Control of a diffusion by switching between two drift-diffusion coefficient pairs. SIAM J Cont Opt 22: 87–94

    Article  Google Scholar 

  • McNamara JM, Houston AI (1982) Short-term behaviour and life-time fitness. In: McFarland DJ (ed) Functional Ontogeny, Pitman, p 60–87

    Google Scholar 

  • McNamara JM, Houston AI (1985) Optimal foraging and learning. J theor Biol 117: 231–249

    Article  Google Scholar 

  • McNamara JM, Houston AI (1986) The common currency for behavioral decisions. Am Nat 127: 358–378

    Article  Google Scholar 

  • McNamara JM, Houston AI (1987a) Partial preferences and foraging. Anim Behav 35: 1084–1099

    Article  Google Scholar 

  • McNamara JM, Houston AI (1987b) A general framework for understanding the effects of variability and interruptions on foraging behaviour. Acta Biotheor 36: 3–22

    Article  PubMed  CAS  Google Scholar 

  • McNamara JM, Houston AI Starvation and Predation in a patchy environment. In:

    Google Scholar 

  • Shorrocks B, Swingland I (eds) Living in a patchy environment McNamara JM, Mace RH, Houston AI (1987) Optimal daily routines of singing and foraging in a bird singing to attract a mate. Behav Ecol Sociobiol 20: 399–405

    Google Scholar 

  • Morse DH (1979) Prey capture by the crab spider Misumena calycina (Araneae: Thomisidae) Oecologia 39: 309–319

    Google Scholar 

  • Morse DH (1981) Prey capture by the crab spider Misumena vatia (L) (Thomisidae) on three common native flowers. Am Midi Nat 105: 358–367

    Article  Google Scholar 

  • Orians GH, Pearson NE (1979) On the theory of central place foraging. In: Horn DJ, Mitchell R, Stair GR (eds) Analysis of Ecological Systems, Ohio State University Press, Columbus, p 155

    Google Scholar 

  • Parker GA, MacNair MR (1978) Models of parent-offspring conflict I Monogamy. Anim Behav 26: 97–110

    Article  PubMed  CAS  Google Scholar 

  • Parker GA, MacNair MR (1979) Models of parent-offspring conflict II Suppression: evolutionary retaliation of the parent. Anim Behav 27: 1210–1235

    Article  Google Scholar 

  • Pyke GH (1984) Optimal foraging theory: a critical review. Ann Rev Ecol Syst 15: 523–575

    Article  Google Scholar 

  • Real LA, Caraco T (1986) Risk and foraging in stochastic environments: theory and evidence. Ann Rev Ecol Syst 17: 371–390

    Article  Google Scholar 

  • Schoener TW (1971) Theory of feeding strategies. Ann Rev Ecol Syst 2: 369–404

    Article  Google Scholar 

  • Schoener TW (1987) A brief history of optimal foraging theory. In: Kamil AC, Krebs JR, Pulliam HR (eds) Foraging Behavior, Plenum Press, New York, p 5

    Chapter  Google Scholar 

  • Stearns SC, Koella JC (1986) The evolution of phenotypic plasticity in life-history traits: predictions of reaction norms for age and size at maturity. Evol 40: 893–913

    Article  Google Scholar 

  • Stephens DW (1981) The logic of risk-sensitive foraging preferences. Anim Behav 29: 628–629

    Article  Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • Turner AK (1982) Optimal foraging by the swallow (Hirundo rustica L): prey size selection. Anim Behav 30: 862–872

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Houston, A.I. (1990). Foraging in the Context of Life-History : General Principles and Specific Models. In: Hughes, R.N. (eds) Behavioural Mechanisms of Food Selection. NATO ASI Series, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75118-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75118-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75120-2

  • Online ISBN: 978-3-642-75118-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics