Exploring Homologous tRNA Sequence Data: Positional Mutation Rates and Genetic Distance

  • Berthold Lausen
Conference paper

Abstract

The literature provides different proposals for mathematical or biological models for the evolutionary interpretation of sequence data. For example Felsenstein (1983) or Weir (1985, 1988a) reviewed the state of art. Many papers propose models with parameters for different kinds of nucleotide substitutions (e.g. Kimura, 1980; Barry and Hartigan, 1987; Cavender and Felsenstein, 1987; Rempe, 1988). Most models need some assumption of independent and identical distributions for each site. Moreover, they often propose to estimate a lot of parameters together with the unknown phylogeny. Some work was done concerning the sequence itself; e.g. Avery (1987) analysed aspects of intron data and Haselman, Chappelear and Fox (1988) discussed secondary and tertiary interactions of tRNA.

Keywords

Nucleoside Estima 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avery, P.J. (1987). The Analysis of Intron Data and Their Use in the Detection of Short Signals. Journal of Molecular Evolution, 26, 335–340.CrossRefGoogle Scholar
  2. Barry, D., and Hartigan, J.A. (1987). Asynchronous Distance Between Homologous DNA Sequences. Biometrics, 43, 261–276.MathSciNetMATHCrossRefGoogle Scholar
  3. Cavender, J.A. and Felsenstein, J. (1987). Invariants of Phytogenies in a Simple Case With Discrete States. Journal of Classification, 4, 57–71.MATHCrossRefGoogle Scholar
  4. Degens, P.O., Lausen, B., and Vach, W. (1988). Reconstruction of Phylogenies by Distance Data: Mathematical Framework and Statistical Analysis. Research report (88/8), Department of Statistics, University of Dortmund.Google Scholar
  5. Dopazo, J., Sobrino, F., Domingo, E. and Moya, A. (1988). Polymorphism and Evolution of the VP1 Protein Gene of Foot-and-Mouth Disease Virus. In: Bock, H.H. (ed.), Classification and Related Methods of Data Analysis, 349–354, North Holland: Amsterdam.Google Scholar
  6. Felsenstein, J. (1983). Statistical Inference of Phytogenies. Journal of the Royal Statistical Society, A, 146, 3, 246–272.MATHCrossRefGoogle Scholar
  7. Haselman, T., Chappelear, J.E. and Fox, G.E. (1988). Fidelity of Secondary and Tertiary Interactions in tRNA. Nucleic Acids Research, 16, 12, 5673–5686.CrossRefGoogle Scholar
  8. Kimura, M. (1980). A Simple Method for Estimating Evolutionary Rates on Base Substitutions Through Comparative Studies of Nucleotide Sequences. Journal of Molecular Evolution, 16, 111–120.CrossRefGoogle Scholar
  9. Lausen, B., and Degens, P.O. (1988), Evaluation of the Reconstruction of Phylogenies With DNA-DNA Hybridization Data. In: Bock, H.H. (ed.), Classification and Related Methods of Data Analysis, 367–374, North Holland: Amsterdam.Google Scholar
  10. McCullagh, P. and Neider, J.A. (1983). Generalized Linear Models. Chapman and Hall: London.MATHGoogle Scholar
  11. Rempe, U. (1988). Characterizing DNA Variability by Stochastic Matrices. In: Bock, H.H. (ed.), Classification and Related Methods of Data Analysis, 375–384, North Holland: Amsterdam.Google Scholar
  12. Sprinzl, M., Hartmann, T., Meissner, F., Moll, J. and Vorderwülbecke, T. (1987). Compilation of tRNA Sequences and Sequences of tRNA Genes. Nucleic Acids Research, 15, Supplement, r53–r188.Google Scholar
  13. Weir, B.S. (1985). Statistical Analysis of Molecular Genetic Data. IMA Journal of Mathematics Applied in Medicine and Biology, 2, 1–39.MathSciNetCrossRefGoogle Scholar
  14. Weir, B.S. (1988a). Statistical Analysis of DNA Sequences. Journal of the National Cancer Institute, 80, 6, 395–406.CrossRefGoogle Scholar
  15. Weir, B.S. (1988b). Sampling Properties of Sequence Statistics. Proceedings of the XIVth International Biometric Conference, Namur 1988, 145–156.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1989

Authors and Affiliations

  • Berthold Lausen
    • 1
  1. 1.FB StatistikUniversität DortmundGermany

Personalised recommendations