Skip to main content

Studies on the Regulation of Glycogen and Lipid Metabolism by Insulin and Growth Factors: The Involvement of Receptor Tyrosine Kinase Activation and Casein Kinase II

  • Conference paper
Molecular Mechanisms of Hormone Action

Abstract

One of the fundamental questions today in studies on the regulation of glycogen and lipid metabolism by insulin and the growth factors whose receptors are protein tyrosine kinases, is how do these ligands on binding to their respective receptors communicate responses to the cytoplasm. Initial events in signaling begin with increased autophosphorylation on tyrosine and serine residues of the cytoplasmic domains of the receptors themselves. Indeed, it is now generally accepted that binding of these hormones results in the activation of intrinsic tyrosine kinase activity, and that this activity is prerequisite and essential for all subsequent metabolic events (for reviews, see Denton 1986; Rosen 1987; Pelech et al. 1987; Czech et al. 1988). These immediate events bring about both increases and decreases in the phosphorylation state (on serine and threonine residues) of many of the important regulatory proteins and enzymes of protein synthesis, glycogen and lipid metabolism, e.g., ribosomal protein S6, glycogen synthase, pyruvate-dehydrogenase, ATP-citrate lyase, acetyl-CoA carboxylase, hormone-sensitive lipase. Importantly, in some instances, good evidence has been obtained to show that these effects on phosphorylation correlate well with changes in the flux of substrates through each respective pathway and also with changes in the intrinsic activity of the individual regulatory steps concerned (for reviews, see Strålfors et al. 1984; Cohen 1986; Roach 1986; Denton 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, P., Glover, C.V.C. and Osheroff, N. (1985) Phosphorylation of DNA topoisomerase II by casein kinase II: Modulation of eukaryotic topoisomerase II activity in vitro. Proc. Natl. Acad. Sci. USA 82: 3164–3168

    Article  PubMed  CAS  Google Scholar 

  • Ackerman, P., Glover C.V.C. and Osheroff, N. (1988) Phosphorylation of DNA topoisomerase II in vivo and in total homogenates of Drosophila cells: the role of casein kinase 1I. J. Biol. Chem. 263: 12653–12660

    PubMed  CAS  Google Scholar 

  • Ballou, L.M. and Fischer, E.H. (1986) Phosphoprotein phosphatases. In: Boyer, P. and Krebs, E.G. (eds.) The enzymes, vol. 17. Academic Press, New York London Orland, pp. 311–361

    Google Scholar 

  • Ballou, L.M., Brautigan, D.L. and Fischer, E.H. (1983) Subunit structure and activation of inactive phosphorylase phosphatase. Biochemistry 22: 3393–3399

    Article  PubMed  CAS  Google Scholar 

  • Brautigan, D.L., Picton, C. and Fischer, E.H. (1980) Phosphorylase phosphatase complex from skeletal muscle. Activatioh of one of two catalytic subunits by manganese ions. Biochemistry 19: 5787–5794

    Article  PubMed  CAS  Google Scholar 

  • Brautigan, D.L., Ballou, L.M. and Fischer, E.H. (1982) Biochemistry 21: 1977–1982

    Article  PubMed  CAS  Google Scholar 

  • Caudwell, F.B., Hiraga, C. and Cohen, P. (1986) Amino acid sequence ofa region on the glycogen-binding subunit of protein phosphatase- 1 phosphorylated by cyclic AMP-dependent protein kinase. FEBS Lett. 194: 85–89

    Article  PubMed  CAS  Google Scholar 

  • Chisholm, A.A.K. and Cohen, P. (1988) Identification ofa third form of protein phosphatase 1 in rabbit skeletal muscle that is associated with myosin. Biochim. Biophys. Acta 968: 392–400

    Article  PubMed  CAS  Google Scholar 

  • Cohen, P. (1986) Muscle glycogen synthase. In: Boyer, P. and Krebs, E.G. (eds) The enzymes, vol. 17. Academic Press, New York London Orlando, pp. 461–495

    Google Scholar 

  • Czech, M.P., Klarlund, J.K., Yagaloff, K.A., Bradford, A.P. and Lewis, R.E. (1988) Insulin receptor signaling. J. Biol. Chem. 263: 11017–11020

    PubMed  CAS  Google Scholar 

  • Denton, R.M. (1986) Early events in insulin actions. In: Greengard, P. and Robinson, G.R. (eds) Advances in cyclic nucleotide and protein phosphorylation research, vol. 29. Raven, New York, pp. 293–341

    Google Scholar 

  • DePaoli-Roach, A.A. (1984) Synergistic phosphorylation and activation of ATP-Mg-dependent phosphoprotein phosphatase by FA/GSK-3 and casein kinase II. J. Biol. Chem. 259: 12144–12152

    PubMed  CAS  Google Scholar 

  • Erikson, E. and Maller, J.L. (1986) Purification and characterization ofa protein kinase from Xenopus eggs highly specific for ribosomal protein S6. J. Biol. Chem. 261: 350–355

    PubMed  CAS  Google Scholar 

  • Fiol, C.J., Mahrenholz, A.M., Wang, Y., Roeske, R.W. and Roach, P.J. (1987) Formation of protein kinase recognition sites by covalent modification of the substrate. J. Biol. Chem. 262: 14042–14048

    Google Scholar 

  • Giugni, T.D., Chen, K. and Cohen, S. (1988) Activation ofa cytosolic serine protein kinase by epidermal growth factor. J. Biol. Chem. 263: 18988–18995

    Google Scholar 

  • Goris, J., Defreyn, G. and Merlevede, W. (1979) Resolution of the ATP-Mg-dependent phosphorylase phosphatase from liver into a two protein component system. FEBS Lett. 32: 279–282

    Google Scholar 

  • Hardie, D.G., Carling, D. and Sim, A.T.R. (1989) The AMP-activated protein kinase: a multisubstrate regulator of lipid metabolism. TIBS 14: 20–23

    CAS  Google Scholar 

  • Haystead, T.A.J. and Hardie, D.G. (1986) Evidence that activation of acetyl-CoA carboxylase by insulin in adipocytes is mediated by a low-M, effector and not by increased phosphorylation. Biochem. J. 240: 99–106

    Google Scholar 

  • Haystead, T.A.J. and Hardie, D.G. (in preparation) A role for the AMP-activated protein kinase in the cyclic AMP-mediated inactivation of acetyl-CoA carboxylase in rat adipocytes

    Google Scholar 

  • Haystead, T.A.J., Campbell, D.G. and Hardie, D.G. (1988) Analysis of sites phosphorylated on acetyl-CoA carboxylase in response to insulin in isolated adipocytes. Eur. J. Biochem. 175: 347–354

    Google Scholar 

  • Hemmings, B.A., Resink, T.J. and Cohen, P. (1982) Reconstitution of a Mg-ATP-dependent protein phosphatase and its activation through a phosphorylation mechanism. FEBS Lett. 150: 319–324

    Article  PubMed  CAS  Google Scholar 

  • Hiraga, A. and Cohen, P. (1986) Phosphorylation of the glycogen-binding subunit of protein phosphatase-1„ by cyclic-AMP-dependent protein kinase promotes translocation of the phosphatase from glycogen to cytosol in rabbit skeletal muscle. Eur. J. Biochem. 161: 763–769

    Google Scholar 

  • Holland, R. and Hardie, D.G. (1985) Both insulin and epidermal growth factor stimulate fatty acid synthesis and increase phosphorylation of acetyl-CoA carboxylase and ATP-citrate lyase in isolated hepatocytes. FEBS Lett. 181: 308–312

    Google Scholar 

  • Holmes, C.F.B., Campbell, D.G., Caudwell, B., Aitken, A. and Cohen, P. (1986a) Eur. J. Biochem. 155: 173–182

    Article  PubMed  CAS  Google Scholar 

  • Holmes, C.F.B., Kuret, J. Chisholm, A.A.K. and Cohen, P. (1986b) Identification of the sites on rabbit skeletal muscle protein phosphatase inhibitor-2 phosphorylated by casein kinase II. Biochim. Biophys. Acta 870: 408–416

    Google Scholar 

  • Holmes, C.F.B., Tonks, N.K., Major, H. and Cohen, P. (1987) Analysis of the in vivo phosphorylation state of protein phosphatase inhibitor-2 from rabbit skeletal muscle by fast-atom bombardment mass spectrometry. Biochim. Biophys. Acta 929: 208–219

    Google Scholar 

  • Jared, L., Kiechle, F., Macaulay, S.L., Parker, J.C. and Kelly, K.L. (1985) Intracellular mediators of insulin action. In: Czech, M.P. (ed.) Molecular basis of insulin action. Plenum, New York, pp. 183–198

    Google Scholar 

  • Jenö, P., Jäggi, N., Luther, H., Siegmann, M. and Thomas, G. (1989) Purification and characterization ofa 40 S ribosomal protein S6 kinase from vanadate-stimulated Swiss 3T3 cells. J. Biol. Chem. 264: 1293–1297

    Google Scholar 

  • Jurgensen, S., Shacter, E., Huang, C.Y. and Chock, P.B., Yang, S.-D., Vandenheede, J.R. and Merlevede, W. (1984) On the mechanism of activation of the ATP•Mg(II)-dependent phosphoprotein phosphatase by kinase FA. J. Biol. Chem. 259: 5864–5870

    Google Scholar 

  • Kelly, K.L., Merida, I., Wong, E.H.A., DiCenzo, D. and Mato, J.M. (1987) A phospho-oligosaccaride mimics the effect of insulin to inhibit isoproterenol-dependent phosphorylation of phospholipid methyltransferase in isolated adipocytes. J. Biol. Chem. 262: 15285–15290

    PubMed  CAS  Google Scholar 

  • Klarlund, J.K. and Czech, M.P. (1988) Insulin-like growth factor I and insulin rapidly increase casein kinase II’activity in BALB/c 3T3 fibroblasts. J. Biol. Chem. 263: 15872–15875

    PubMed  CAS  Google Scholar 

  • Lanier, J., Gastio, G., Cheng, K., DePaoli-Roach, A.A., Huang, L., Daggy, P. and Kellogg, J. (1979) Generation by insulin of a chemical mediator that controls protein phosphorylation and dephosphorylation. Science 206: 1408–1410

    Article  Google Scholar 

  • Lawrence, Jr., J.C. and Hinken, J.F. (1983) Hormonal control of glycogen synthase in rat hemidiaphragms. J. Biol. Chem. 258: 10710–10719

    PubMed  CAS  Google Scholar 

  • MacKintosh, C., Campbell, D.G., Hiraga, A. and Cohen, P. (1988) Phosphorylation of the glycogen-binding subunit of protein phosphatase-1„ in response to adrenalin. FEBS Lett. 234: 189–194

    Article  PubMed  CAS  Google Scholar 

  • Munday, M.R. and Hardie, D.G. (1986) The role of acetyl-CoA carboxylase phosphorylation in the control of mammary gland fatty acid synthesis during the starvation and re-feeding of lactating rats. Biochem. J. 237: 85–91

    PubMed  CAS  Google Scholar 

  • Munday, M.R., Campbell, D.G., Carling D. and Hardie, D.G. (1988) Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase. Eur. J. Biochem. 175: 331–338

    Article  PubMed  CAS  Google Scholar 

  • Novak-Hofer, I. and Thomas, G. (1985) Epidermal growth factor-mediated activation of an S6 kinase in Swiss mouse 3T3 cells. J. Biol. Chem. 260: 10314–10319

    PubMed  CAS  Google Scholar 

  • Palen, E. and Traugh, J.A. (1987) Phosphorylation of ribosomal protein S6 by cAMP-dependent protein kinase and mitogen-stimulated S6 kinase differentially alters translation of globin mRNA. J. Biol. Chem. 262: 3518–3523

    PubMed  CAS  Google Scholar 

  • Parker, P.J., Caudwell, F.B. and Cohen (1983) Glycogen synthase from rabbit skeletal muscle. Effect of insulin on the state of phosphorylation of the seven phosphoserine residues in vivo. Eur. J. Biochem., 130: 227–234

    Article  PubMed  CAS  Google Scholar 

  • Pelech, S.L. Tinker, D.A., Chan, C.P. and Krebs, E.G. (1987) Role of protein phosphorylation in growth factor signal transduction. In: Raizada, M.M., Phillips, M.I. and LeRoith, D. (eds.) Insulin, insulin-like growth factors, and their receptors in the central nervous system. Plenum, New York, pp 27–46

    Google Scholar 

  • Ray, L.B. and Sturgill, T.W. (1987) Rapid stimulation by insulin of a serine/threonine kinase in 3T3–L1 adipocytes that phosphorylates microtubule-associated protein 2 in vitro. Proc. Natl. Acad. Sci. USA 84: 1502–1506

    Google Scholar 

  • Ray, L.B. and Sturgill, T.W. (1988a) Characterization of insulin stimulation microtubule-associated protein kinase, J. Biol. Chem. 263: 12721–12727

    CAS  Google Scholar 

  • Ray, L.B. and Sturgill, T.W. (1988b) Insulin stimulation microtubule-associated protein kinase is phosphorylated on tyrosine and threonine in vivo. Proc. Natl. Acad. Sci. USA 85: 3753–3757

    Article  Google Scholar 

  • Reed, L.J. and Yeamen, S.J. (1986) Pyruvate dehydrogenase. In: Boyer, P. and Krebs, E.G. (eds.) The enzymes, vol. 17. Academic Press, New York London Orlando, pp. 77–95

    Google Scholar 

  • Roach, P.J. (1986) Liver glycogen synthase. In: Boyer, P. and Krebs, E.G. (eds.) The enzymes, vol. 17. Academic Press, New York London Orlando, pp. 499–539

    Google Scholar 

  • Rosen, O.M. (1987) Aftern insulin binds. Science 237: 1452–1458

    Article  PubMed  CAS  Google Scholar 

  • Ross, R., Nist, C., Kariya, B., Rivest, M.J., Raines, E. and Callis (1978) Physiological quiescence in plasma-derived growth factor on cell growth in culture. J. Cell. Physiol. 97: 497–508

    Google Scholar 

  • Saltiel, A.R., Fox, J.A., Sherline, P. and Cuatrecases, P. (1986) Insulin-stimulated hydrolysis of a novel glycolipid generates modulators of cAMP phosphodiesterase. Science 233: 967–972

    Article  PubMed  CAS  Google Scholar 

  • Sommercorn, J., McNall, S.J., Fischer, E.H. and Krebs, E.G. (1987) Phosphorylation of acetyl-CoA carboxylase by casein kinase II enhances the rate of dephosphorylation of the cAMP-dependent protein kinase site. Fed. Proc. 46:2003, Abst 452

    Google Scholar 

  • Stewart, A.A., Hemmings, B.A., Cohen, P., Goris, J. and Merlevede, W. (1981) The Mg-ATP, dependent protein phosphatase and protein phosphatase 1 have identical substrate specificities. Eur. J. Biochem. 205: 196–205

    Google Scholar 

  • Strâlfors, P., Fredrikson, G., Olsson, H. and Belfrage, P. (1984) Reversible phosphorylation of hormone-sensitive lipase in the hormonal control of adipose tissue lipolysis. Hormone Cell. Reg. 8: 153–162

    Google Scholar 

  • Strâlfors, P., Hiraga, A. and Cohen, P. (1985) The protein phosphatases involved in cellular regulation. Eur J. Biochem. 149: 295–303

    Article  PubMed  Google Scholar 

  • Sturgill, T.W., Ray B.L., Erikson, E. and Mailer, J.L. (1988) Insulin stimulates MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature (London) 334: 715–718

    Article  CAS  Google Scholar 

  • Villa-Moruzzi, E., Ballou, L.M. and Fischer, E.H. (1984) Phosphorylase phosphatase. J. Biol. Chem 259: 5857–5863

    PubMed  CAS  Google Scholar 

  • Witters, L.A., Tipper, J.P. and Bacon, G.W. (1983) Stimulation of site-specific phosphorylation of acetyl coenzyme A carboxylase by insulin and epinephrine. J. Biol. Chem. 258: 5643–5648

    PubMed  CAS  Google Scholar 

  • Witters, L.A., Watts, T.D., Daniels, D.L. and Evans, J.L. (1988) Insulin stimulates the dephosphorylation and activation of acetyl-CoA carboxylase. Proc. Natl. Acad Sci. USA 85: 5473–5477

    Article  PubMed  CAS  Google Scholar 

  • Yang, S.-D., Chou, C., Huang, M., Song, J.-S. and Chen, H.-C. Epidermal growth factor induces activation of protein kinase FA and ATP•Mg-dependent protein phosphatase in A431 cells. J. Biol. Chem 264: 5407–5411

    Google Scholar 

  • Yang, S.-D., Ho, L.-T. and Fung, T.-J. (1988) Insulin induces activation and translocation of protein kinase FA (a multifunctional protein phosphatase activator) in human platelet. Biochem. Biophys. Res. Commun. 151: 61–69

    Article  PubMed  CAS  Google Scholar 

  • Yang, S.-D., Vandenheede, J.R., Goris, J. and Merlevede, W. (1980) ATP•Mg-dependent protein phosphatase from rabbit skeletal muscle. J. Biol. Chem 255: 11759–11767

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haystead, T.A.J., Krebs, E.G. (1989). Studies on the Regulation of Glycogen and Lipid Metabolism by Insulin and Growth Factors: The Involvement of Receptor Tyrosine Kinase Activation and Casein Kinase II. In: Gehring, U., Helmreich, E.J.M., Schultz, G. (eds) Molecular Mechanisms of Hormone Action. 40. Colloquium der Gesellschaft für Biologische Chemie 6.– 8. April 1989 in Mosbach/Baden, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75022-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75022-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75024-3

  • Online ISBN: 978-3-642-75022-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics