Skip to main content

Mechanisms for Hormonal Regulation of the Different Isoforms of Guanylate Cyclase

  • Conference paper

Abstract

Cyclic GMP was first described in urine and other biological samples more than 25 years ago. The description and characterization of the enzymes responsible for cyclic GMP synthesis (guanylate cyclase), cyclic GMP hydrolysis (phosphodiesterase), and expression of some of the effects of cyclic GMP (cyclic GMP-dependent protein kinase) followed shortly thereafter. It soon became apparent that various hormones could increase cyclic GMP synthesis and accumulation in different tissues. Thus, it was anticipated that cyclic GMP would serve as a second messenger of many hormone-induced responses (see Murad 1986; Murad et al. 1978, 1979, 1988; Waldman and Murad 1987). However, the mechanisms of hormone-induced cyclic GMP accumulation in tissues and the coupling of hormone receptors to cyclic GMP synthesis have remained unresolved until the past several years. The major difficulties in answering these interesting questions are due to the multiple isoenzyme forms of guanylate cyclase, the diverse mechanisms of hormone-receptor coupling to the regulation of each of these isoenzymes, and the failure of hormones to activate the enzyme in cell-free preparations. The detailed characterization and purification of these isoforms of guanylate cyclase in our laboratory and others have permitted us to begin to understand the mechanisms of hormonal regulation of the guanylate cyclase isoenzyme family. Some of the properties of the isoforms of guanylate cyclase and the mechanisms of hormone-receptor coupling to each of these isoforms will be briefly reviewed here. Interestingly, the four isoenzyme forms of guanylate cyclase that have been described to date are each uniquely coupled to hormonal regulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, W.P., Mittal, C.K., Katuski, S. & Murad, F. (1977) Nitric oxide activates guanylate cyclase and increases guanosine 3′,5′-monophosphate levels in various tissue preparations. Proc. Natl. Acad. Sci. USA 74:3203–3207

    Article  PubMed  CAS  Google Scholar 

  • Bohme, E., Graf, H. & Schultz, G. (1978) Effects of sodium nitroprusside and other smooth muscle relaxants on cyclic GMP formation in smooth muscle and platelets. Adv. Cyclic Nucl. Res. 9:131–143

    CAS  Google Scholar 

  • Chang, C.H., Kohse, K., Chang, B. & Murad, F. (1989) Participation of protein phosphorylation in the activation of particulate guanylate cyclase by ANP. FASEB Vol 3, Issue 4, A 1005

    Google Scholar 

  • Chinkers, M., Garbers, D., Chang, M.S., Lowe, D., Chin, H.. Goeddel, D.V. & Schulz, S. (1989) A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature (London) 338:78–83

    Article  PubMed  CAS  Google Scholar 

  • Deguchi, T. & Yoshioko, M. (1982) L-Arginine identified as an endogenous activator for soluble guanylate cyclase from neuroblastoma cells. J. Biol. Chem. 257:10147–10151

    PubMed  CAS  Google Scholar 

  • Field, M., Graf, L.H., Laird, W.J. & Smith, P.L. (1978) Heat-stable enterotoxin of E. coli: in-vitro effects on guanylate cyclase activity, cyclic GMP concentration and ion transport in small intestine. Proc. Natl. Acad. Sci. USA 75:2800–2804

    Article  PubMed  CAS  Google Scholar 

  • Furchgott, R.F. (1988) Studies on the relaxation of rabbit aorta by sodium nitrite: the basis for the proposal that the acid-activatable inhibitory factor from bovine retractor penis is inorganic nitrite and EDRF is nitric oxide. In: VanHoutte, P. (ed.) Mechanisms of vasodilation. Raven Press, New York 401–414

    Google Scholar 

  • Guerrant, R.L., Hughes, J.M., Chang, B., Robertson, D.C. & Murad, F. (1980) Activation of intestinal guanylate cyclase by heat stable enterotoxin of Escherichia coli: studies of tissue specificity, potential receptors and intermediates. J. Infect. Dis. 142:220–228

    Article  PubMed  CAS  Google Scholar 

  • Hibbs, J.D., Vavrin, Z. & Taintor, R.L. (1987) L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J. Immunol. 138:550–565

    PubMed  CAS  Google Scholar 

  • Hughes, J., Murad, F., Chang, B. & Guerrant, R. (1978) The role of cyclic GMP in the mechanism of action of heat-stable enterotoxin of E. coli. Nature (London) 271:755–756

    Article  CAS  Google Scholar 

  • Ignarro, L.J., Buga, G.M., Wood, K.S., Byrns, R.E. & Chaudhuri, G. (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA 84:9265–9269

    Article  PubMed  CAS  Google Scholar 

  • Ishii, K., Gorsky, L., Förstermann, V. & Murad, F. (1989) Endothelium-derived relaxing factor: the endogenous activator of soluble guanylate cyclase in various types of cells. J. Applied Cardiology (in press.)

    Google Scholar 

  • Kamisaki, Y., Saheki, S., Nakane, M., Palmieri, J., Kuno, T., Chang, B., Waldman, S.A. & Murad, F. (1986) Soluble guanylate cyclase from rat lung exists as a heterodimer. J. Biol. Chem. 261:7236–7241

    PubMed  CAS  Google Scholar 

  • Katsuki, S. & Murad, F. (1977) Regulation of cyclic 3’,5’-adenosine monophosphate and cyclic 3’,5’guanosine monophosphate levels and contractility in bovine tracheal smooth muscle. Mol. Pharmacol. 13:330–341

    CAS  Google Scholar 

  • Katsuki, S., Arnold, W., Mittal, C.K. & Murad, F. (1977) Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J. Cyclic Nucl. Res. 3:23–25

    CAS  Google Scholar 

  • Kuno, T., Andresen, J.W., Kamisaki, Y., Waldman, S.A., Chang, L.Y., Saheki, S., Leitman, D.C., Nakane, M. & Murad, F. (1986) Co-purification of an atrial natriuretic factor receptor and particulate guanylate cyclase from rat lung. J. Biol. Chem. 261:5817–5823

    PubMed  CAS  Google Scholar 

  • Kurose, H., Inagami, T. & Ui, M. (1987) Participation of adenosine 5’ triphosphate in the activation of membrane-bound guanylate cyclase by the atrial natriuretic factor. FEBS Lett. 219:375–379

    Article  PubMed  CAS  Google Scholar 

  • Leitman, D.C., Agnost, V.L., Catalano, R.M., Schroeder, H., Waldman, S.A., Bennett, B.M., Tuan, J.J. & Murad, F. (1988) Atrial natriuretic peptide, oxytocin and vasopressin increase cyclic GMP in LLC-PK, kidney epithelial cells. Endocrinology 122:1478–1485

    Article  PubMed  CAS  Google Scholar 

  • Mittal. C.K. & Murad, F. (1977) Properties and oxidative regulation of guanylate cyclase. J. Cyclic Nucl. Res. 3:381–391

    CAS  Google Scholar 

  • Mittal, C.K., Arnold, W.P. & Murad, F. (1978) Characterization of protein inhibitors of guanylate cyclase activation from rat heart and bovine lung. J. Biol. Chem. 253:1266–1271

    PubMed  CAS  Google Scholar 

  • Moncada, S., Palmer, R.M.J. & Higgs, E.A. (1988) The discovery of nitric oxide as the endogenous nitrovasodilator. Hypertension 12:365–372

    PubMed  CAS  Google Scholar 

  • Murad, F. (1986) Cyclic guanosine monophosphate as a mediator of vasodilation. J. Clin. Invest. 78:1–5

    Article  PubMed  CAS  Google Scholar 

  • Murad, F. (1989) Modulation of the guanylate cyclase-cyclic G MP system by vasodilators and the role of free radicals as second messengers. Proc. NATO Adv. Stud. Inst. Vascular endothelium: receptors and transduction mechanisms, Porto Carros, Greece June, 1988, in Vascular Endothelium eds J.D. Catrovos, C.N. Gillis and U.S. Ryan, Plenum Pub. 157–164

    Google Scholar 

  • Murad, F. & Aurbach, G.D. (1978) Cyclic GMP in metabolism: interrelationship of biogenic amines, hormones and other agents. In: Freinkel, N. (ed.) The year in metabolism 1976–1977. Plenum, New York, pp 1–32

    Google Scholar 

  • Murad, F., Mittal, C.K., Arnold, W.P., Katsuki, S. & Kimura, H. (1978) Guanylate cyclase: activation by azide, nitro compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv. Cyclic Nucl. Res. 9:145–158

    CAS  Google Scholar 

  • Murad, F., Arnold, W.P., Mittal, C.K. & Braughler, J.M. (1979) Properties and regulation of guanylate cyclase and some proposed functions for cyclic GMP. Adv. Cyclic Nucl. Res. 11:175–204

    CAS  Google Scholar 

  • Murad, F., Leitman, D., Waldman, S., Chang, C.H., Hirata, M. & Kohse, K. (1988) Effects of nitrovasodilators, endothelium-dependent vasodilators and atrial peptides on cGMP. Cold Spring Harbor Symp. Quant. Biol. 53:1005–1009

    CAS  Google Scholar 

  • Rapoport, R.M. & Murad, F. (1983) Endothelium-dependent and nitrovasodilator-induced relaxation of vascular smooth muscle: role for cyclic GMP. J. Cyclic Nucl. Protein Phosphor. Res. 9:281–296

    CAS  Google Scholar 

  • Song, D.L., Kohse, K. & Murad, F. (1988) Brain natriuretic factor: augmentation of cellular cyclic GMP, activation of particulate guanylate cyclase and receptor binding. FEBS Lett. 1:125–129

    Article  Google Scholar 

  • Waldman, S.A. & Murad, F. (1987) Cyclic GMP synthesis and function. Pharm. Rev. 39:163–196

    PubMed  CAS  Google Scholar 

  • Waldman, S.A., Rapoport, R.M. & Murad, F. (1984) Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues. J. Biol. Chem. 259:14332–14334

    PubMed  CAS  Google Scholar 

  • Waldman, S.A., Kuno, T., Kamisaki, Y., Chang, L.Y., Garieppy, J., O’Hanley, P.D., Schoolnik, G.K. & Murad, F. (1986) Intestinal receptor for heat-stable enterotoxin of E. Coli is tightly coupled to a novel form of particulate guanylate cyclase. Inf. Immunol. 51:320–326

    CAS  Google Scholar 

  • Waldman, S.A., Leitman, D.C., Chang, L.Y. & Murad, F. (1989) Comparison of particulate guanylate cyclase in cells with and without atrial natriuretic peptide receptor binding activity Mol. Cell. Biochem. (in press).

    Google Scholar 

  • Winquist, R.M., Faison, E.P., Waldman, S.A., Schwartz, K., Murad, F. & Rapoport, R.M. (1984) Atrial natriuretic factor elicits an endothelium independent relaxation and activates particulate guanylate cyclase in vascular smooth muscle. Proc. Natl. Acad. Sci. 81:7661–7664

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Murad, F. (1989). Mechanisms for Hormonal Regulation of the Different Isoforms of Guanylate Cyclase. In: Gehring, U., Helmreich, E.J.M., Schultz, G. (eds) Molecular Mechanisms of Hormone Action. 40. Colloquium der Gesellschaft für Biologische Chemie 6.– 8. April 1989 in Mosbach/Baden, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75022-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75022-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75024-3

  • Online ISBN: 978-3-642-75022-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics