Advertisement

Network Analysis of Simulated Succession after an Upwelling Event

  • J. G. Field
  • C. L. Moloney
  • C. G. Attwood
Part of the Coastal and Estuarine Studies book series (COASTAL, volume 32)

Abstract

Traditional approaches to ecological succession have viewed succession as a gradual change in community composition characterized by a progressive change in species structure, an increase in living and dead biomass and a tendency towards a balance between community production and respiration (Smith 1980). Odum (1969), in his classic paper on ecosystem development, identified 24 attributes of the total system which may be used to determine whether a system is in the early stages of development or approaching the mature, climax stage. In upwelling marine systems there is commonly a period of rapid upwelling of nutrients followed by a period of vertical stability, during which a plankton community may be seen to change from one showing characteristics of early development to one showing more maturity. We were interested in applying network analysis to the upwelling ecosystem at various stages of its development, to see how the indices changed.

Keywords

Trophic Position Euphotic Zone Plankton Community Standing Stock Nitrogen Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, W. R.H. & L. Hutchings 1980. Upwelling in the southern Benguela current. Prog. Oceanogr. 9: 1–81CrossRefGoogle Scholar
  2. Armstrong, D.A, B.A Mitchell-Innes., F. Verheye-Dua, H. Waldron & L. Hutchings 1987. Physical and biological features across an upwelling front in the southern Benguela In: Payne, A I. L., J. A Gulland & K. H. Brink (eds) The Benguela and Comparable Ecosystems. S. Afr. J. mar. Sci. 5: 171–190Google Scholar
  3. Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L-A. Meyer-Reil & F. Thingstad 1983. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263CrossRefGoogle Scholar
  4. Barlow, R. G. 1982. Phytoplankton ecology in the southern Benguela current. HI. Dynamics of a bloom. J. Exp. Mar. Biol. Ecol. 63: 239–248CrossRefGoogle Scholar
  5. Barthel, K.-G. 1983. Food uptake and growth efficiency of Eurytemora Affinis ( Copepoda: Calanoida). Mar. Biol. 74: 269–274CrossRefGoogle Scholar
  6. Brown, P. C. & L. Hutchings 1985. Phytoplankton distribution and dynamics in the Southern Benguela Current International Symposium on upwelling off the west coast of Africa. Instituto de Investigaciones Pequeras. Barcelona 1: 319–344Google Scholar
  7. Chapman, P. & L.V. Shannon 1985. The Benguela ecosystem. 2. Chemistry and related processes. Oceanogr. Mar. Biol. Ann. Rev. 23: 183–251Google Scholar
  8. Crawford, R. J. M., L.V. Shannon & D.E. Pollock 1987. The Benguela ecosystem 4. The major fish and invertebrate resources. Oceanogr. Mar. Biol. Ann. Rev. 25: 353–505Google Scholar
  9. Ducklow, H. W., M. J. R Fasham & A. F. Vézina 1989. Derivation offlow networks for open ocean plankton systems. In: Wulff, F., J. G. Field & K. H. Mann(Eds), NetworkAnalysis in Marine Ecology: Methods and Applications. Lecture Notes on Coastal and Estuarine Studies. Springer-Verlag, New York.Google Scholar
  10. Fenchel, T & T.H. Blackburn 1979. Bacteria and mineral cycling. Academic Press, London, 225 ppGoogle Scholar
  11. Hall, DJ., S.T. Threlkeld, C.W. Burns & P.H. Cowley 1976. The size-efficiency hypothesis and the size structure of Zooplankton communities. Ann. Rev. Ecol. Syst 7: 177–208CrossRefGoogle Scholar
  12. Kay, J J. 1984. Self-organization in living systems. PhD thesis, University of Waterloo, Ontario, Canada.Google Scholar
  13. Kay, J J., L.Graham & R.E. Ulanowicz 1989. A detailed guide to network analysis. Wulff, F., J.G. Field & K.H. Mann (eds) Network Analysis in Marine Ecology: Methods and Applications. Lecture notes on coastal and estuarine studies. Springer-Verlag, New York.Google Scholar
  14. Lucas, MI. 1986. Decomposition in the pelagic zone. J. Iimnol. Soc. sth. Afr. 12: 99–122Google Scholar
  15. Lucas, ML, SJ. Painting & D.G. Muir 1986. Estimates of carbon flow through bacterioplankton in the S. Benguela upwelling region based on 3H-Thymidine incorporation and predator free incubations. Proceedings of the Second International Colloquium of Marine Bacteriology, Actes de Colloques 3. Brest. Centre National de la Recherche Scientifique/IFREMER, 357–383Google Scholar
  16. Lucas, M. I., T. A. Probyn & S. J. Painting 1987. An experimental study of microflagellate bacterivory: Further evidence for the importance and complexity of microplanktonic interactions. In: Payne, A. I., J. A. Gulland & K. H. Brink (eds) The Benguela and Comparable Ecosystems. S. Afr. J. mar. Sei. 5: 791–808Google Scholar
  17. MacIsaac, J J. & R.C. Dugdale 1969. The kinetics of nitrate and ammonia uptake by natural populations of marine phytoplankton. Deep Sea Res. 16: 45–57Google Scholar
  18. Margalef, R. 1968. Perspectives in ecological theory, Univesity of Chicago Press, 112 p.Google Scholar
  19. Miller, C. A. & M. R. Landry 1984. Ingestion-dependent rates of ammonium excretion by the copepod Calanuspacificus. Mar. Biol. 78: 265–270CrossRefGoogle Scholar
  20. Moloney, C. L. 1988. A size-based model of carbon and nitrogen flows in plankton communities. PhD Thesis, University of Cape TownGoogle Scholar
  21. Moloney, C. L. & J. G. Field, in press a. Modelling carbon and nitrogen flows in a microbial plankton community. In: Reid, P. C., P. H. Burkhill & C. M. Turley (eds) Protozoa and their role in Marine Processes. NATO ASI series, Springer-Verlag, New York.Google Scholar
  22. Moloney, C. L & J. G. Field, in press b. General allometric equations for nutrient uptake, ingestion and respiration in planktonic organisms. Iimnol. Oceanogr. (submitted).Google Scholar
  23. Odum, E. P. 1969. The strategy of ecosystem development. Science. 164: 262–270PubMedCrossRefGoogle Scholar
  24. Painting, S. J., M. I. Lucas & D. G. Muir, in press. Fluctuations in heterotrophic bacterial production, activity and community structure in response to development and decay of phytoplankton in a microcosm. Mar. Ecol. Prog. Ser.Google Scholar
  25. Shannon, L. V. & J. G. Field 1985. Are fish stocks food limited in the southern Benguela pelagic ecosystem? Mar. Ecol. Prog. Ser. 22: 7–19CrossRefGoogle Scholar
  26. Shannon, L. V. & S. C. Pillar 1986. The Benguela ecosystem. 3. Plankton. Oceanogr. Mar. Biol. Ann. Rev. 24: 65–170Google Scholar
  27. Smith, R. L. 1980. Ecology and Field Biology, 3rd edition. Harper & Row, New YorkGoogle Scholar
  28. Strickland, J. D. H. 1960. Measuring the production of marine phytoplankton. Bull. Fish. Res. Bd Can. 122: 1–172Google Scholar
  29. Stuart, V. 1986. Feeding and metabolism of Euphausia lucens (Euphausiacea) in the southern Benguela current. Mar. Ecol. Prog. Ser. 30: 117–125CrossRefGoogle Scholar
  30. Ulanowicz, R. E. 1980. An hypothesis on the development of natural communities. J. theor. Biol. 85: 223–245PubMedCrossRefGoogle Scholar
  31. Ulanowicz, R. E. 1984. Community measures of marine food networks and their possible applications. In: Fasham, MJ.R. (ed.) Flows of Emrgy and Mcüeriab in Marine Ecosystems. Plenum Publishing Corp, New York, p. 23–47Google Scholar
  32. Ulanowicz, R. E. 1986. Growth and Development: Ecosystems Phenomenology. Springer-Verlag, New York Google Scholar
  33. Verheye-Dua, F. & M. I. Lucas 1988. Southern Benguela frontal region. I. Hydrology, Phytoplankton and Bacterioplankton. Mar. Ecol. Prog. Ser. In press.Google Scholar
  34. Wulff, F. & J. G. Field 1983. The importance of different trophic pathways in a nearshore benthic community under upwelling and downwelling conditions. Mar. Ecol. Prog. Ser. 12: 217–228CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. G. Field
    • 1
  • C. L. Moloney
    • 1
  • C. G. Attwood
    • 1
  1. 1.Marine Biology Research Institute Zoology DepartmentUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations