Skip to main content

C3 Binding Proteins of Foreign Origin

  • Conference paper
The Third Component of Complement

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 153))

Abstract

The generation of C3b from C3 releases the internal thioester and allows C3 to bind covalently to OH and NH2 groups, using the carbonyl group and leaving the SH group unoccupied. The molecules to which C3b binds in this way are commonly referred to as C3 acceptors and range from H2O to large fluid-phase and membrane molecules. C3b and its derivatives—iC3b, C3d,g, and C3d, covalently bound to C3 acceptors—have the potential to interact noncovalently with a number of fluid-phase and membrane-associated molecules (LAMBRIS 1988). Such molecules on pathogens are the subject of this chapter, particularly whether the presence of such C3 binding molecules constitute advantages for the pathogen in coping with the control mechanisms of the host, i.e., whether they can be considered as pathogenicity factors.

The authors’ own work cited in this study was supported by grants from the FWF (P6920 and P6923).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnot DE, Barnwell JW, Tam JP, Nussenzweig V, Nussenzweig RS, Enea V (1985) Circum-sporozoite protein of Plasmodium vivax. gene cloning and characterization of the immunodo-minant epitope. Science 230: 815–818

    PubMed  CAS  Google Scholar 

  • Atkinson JP, Fames T (1987) Separation of self from non-self in the complement system. Immunol Today 8: 212–215

    CAS  Google Scholar 

  • Auriault C, Ouaissi MA, Torpier G, Eisen H, Capron A (1981) Proteolytic cleavage of IgG bound to the Fc receptor of Schistosoma manson. schistosomula. Parasite Immunol 3: 33

    PubMed  CAS  Google Scholar 

  • Bielefeldt-Ohmann H, Babiuk LA (1988) Induction of receptors for complement and immuno-globulins by herpesviruses of various species. Virus Res 9: 335–342

    Google Scholar 

  • Buckmaster EA, Gompels U, Minson AC (1984) Characterisation and physical mapping of an HSV-1 glycoprotein of approximately 115 x 1000 molecular weight. Virology 139:408–413

    PubMed  CAS  Google Scholar 

  • Calderone RA, Linehan L, Wadsworth E, Sandberg AL (1988) Identification of C3d receptors on Candida albican.. Infect Immun 56: 252–258

    PubMed  CAS  Google Scholar 

  • Campadelli-Fiume G, Poletti L, Dall’olio F, Serafini-Cessi F (1982) Infectivity and glycoprotein processing of herpes simplex virus type 1 grown in a ricin-resistant cell line deficient in.-acetylglycosaminyl transferase I. J Virol 43: 1061–1071

    PubMed  CAS  Google Scholar 

  • Capron A, Capron M, Dupas H, Bout D, Petitprez A (1974) Etude in vitro des phénomènes immunologiques dans la schistosomiase humaine et expérimentale. I. Etude comparative in vitro de l’activité léthal d’immunosérums sur les formes immatures et sur les adultes de S. mansoni. Int J Parasitol 4: 613–623

    PubMed  CAS  Google Scholar 

  • Chilgren RA, Hong R, Quie PG (1968) Human serum interaction with Candida albican.. J Immunol 101: 128–132

    PubMed  CAS  Google Scholar 

  • Cooper A, Rosen H, Blackwell JM (1988) Monoclonal antibodies that recognize distinct epitopes of the macrophage type three complement receptor differ in their ability to inhibit binding of Leishmani. promastigotes harvested at different phases of their groth cycle. Immunology 65: 511–514

    PubMed  CAS  Google Scholar 

  • Cooper NR, Nemerow GR (1983) Complement, viruses, and virus-infected cells. Springer Sem Immunopathol 6: 327–347

    Google Scholar 

  • Cooper NR, Moore MD, Nemerow GR (1988) Immunobiology of CR2, the B lymphocyte receptor for Epstein-Barr virus and the C3d complement fragment. Annu Rev Immunol 6: 85–113

    PubMed  CAS  Google Scholar 

  • Dame JB, Williams JL, McCutchan TF, Weber JL, Wirtz RA, Hockmeyer WT, Maloy WL, Haynes JD, Schneider I, Roberts D, Sanders GS, Reddy EP, Diggs CL, Miller LH (1984) Structure of the gene encoding the immunodominant surface antigen on the sporozoite of the human malaria parasite Plasmodium falciparu.. Science 225: 593–599

    PubMed  CAS  Google Scholar 

  • Dierich MP, Schulz TF, Eigentler A, Huemer H, Schwaeble W (1988) Structural and functional relationships among receptors and regulators of the complement system. Mol Immunol 25: 1043–1051

    PubMed  CAS  Google Scholar 

  • DiScipio RG, Chakravarti DN, Müller-Eberhard HJ, Fey GH (1988) The structure of human complement component C7 and the C5b-7 complex. J Biol Chem 263: 549–560

    PubMed  CAS  Google Scholar 

  • Dowbenko DJ, Lasky LA (1984) Extensive homology between herpes simplex virus type 2 glycoprotein F gene and the herpes simplex virus type 1 glycoprotein C gene. J Virol 52: 154–163

    PubMed  CAS  Google Scholar 

  • Dowler KW, Veltri RW (1984) In vitro neutralization of HSV-2: inhibition by binding of normal IgG and purified Fc to virion Fc receptor (FcR). J Med Virol 13: 251–259

    PubMed  CAS  Google Scholar 

  • Draper KG, Costa RH, Lee G-Y, Spear PG, Wagner EK (1984) Molecular basis of the glycoprotein-C-negative phenotype of herpes simplex virus type 1 macroplaque strain. J Virol 51: 578–585

    PubMed  CAS  Google Scholar 

  • Edwards JE, Gaither TA, O’Shea JJ, Rotrosen D, Lawley TJ, Wright SA, Frank MM, Green I (1986) Expression of specific binding sites on Candid. with functional and antigenic characteristics of human complement receptors. J Immunol 137: 3577–3583

    PubMed  CAS  Google Scholar 

  • Eigentler A, Schulz TF, Larcher C, Breitwieser EM, Myones BL, Petzer AL, Dierich MP (1989) Temperature dependent expression of a C3bi binding protein on Candida albican. and its relationship to human CR3. Infect Immun 57/2: 616–622

    Google Scholar 

  • Eisenberg RJ, Ponce de Leon M, Friedman HM, Fries LF, Frank MM, Hastings JC, Cohen GH (1987) Complement component C3b binds directly to purified glycoprotein C of herpes simplex virus types 1 and 2. Microbiol Pathol 3: 423–435

    CAS  Google Scholar 

  • Fischer E, Ouaissi MA, Velge P, Cornette J, Kazatchkine MD (1988) Gp58/68, a parasite component that contributes to the escape of the trypomastigote form of Trypanosoma cruz. from damage by the human alternative complement pathway. Immunology 65(2): 299–305

    PubMed  CAS  Google Scholar 

  • Friedman HM, Cohen GH, Eisenberg RJ, Scidel CA, Cines DB (1984) Glycoprotein C of herpes simplex virus 1 acts as a receptor for the C3b complement component on infected cells. Nature 309: 633–635

    PubMed  CAS  Google Scholar 

  • Friedman HM, Glorioso JC, Cohen GH, Hastings JC, Harris SL, Eisenberg RJ (1986) Binding of complement component C3b to glycoprotein C of herpes simplex virus type 1: mapping of gC-binding sites and demonstration of conserved C3b binding in low passage clinical isolates. J Virol 60: 470–475

    PubMed  CAS  Google Scholar 

  • Fries LF, Friedman HM, Cohen GH, Eisenberg RJ, Hammer CH, Frank MM (1986) Glycoprotein C of herpes simplex virus 1 is an inhibitor of the complement cascade. J Immunol 137: 13636–1641

    Google Scholar 

  • Frink RJ, Eisenberg R, Cohen G, Wagner EK (1983) Detailed analysis of the portion of the herpes simplex virus type 1 genome encoding glycoprotein C. J Virol 45: 634–647

    PubMed  CAS  Google Scholar 

  • Gilmore BJ, Retsinas EM, Lorenz JS, Hostetter MK (1988) An iC3b-receptor on Candida albican.: structure, function, and correlates for pathogenicity. J Infect Dis 157(1): 38–46

    PubMed  CAS  Google Scholar 

  • Godson GN (1985) Molecular approach of malaria vaccines. Sci Am 252: 32–39

    Google Scholar 

  • Goundis D, Reid KBM (1988) Properdin, the terminal complement components, thrombo-spondin and the circumsporozoite protein of malaria parasites contain similar sequence motifs. Nature 335: 82–85

    PubMed  CAS  Google Scholar 

  • Handman E, Goding JW (1985) The Leishmani. receptor for macrophages is a lipid-containing glycoconjugate. EMBO J 4: 329–336

    PubMed  CAS  Google Scholar 

  • Heidenreich F, Dierich MP (1985) Candida albican. and Candida stellatoide., in contrast to other Candid. species, bind iC3B and C3d but not C3b. Infect Immun 50: 598–600

    PubMed  CAS  Google Scholar 

  • Holland TC, Homa FL, Marlin SD, Levine M, Glorioso J (1984) Herpes simplex virus type 1 glycoprotein C-negative mutants exhibit multiple phenotypes, including secretion of truncated glycoproteins. J Virol 52: 566–574

    PubMed  CAS  Google Scholar 

  • Homa FL, Purifoy DJM, Glorioso JC, Levine M (1986) Molecular basis of the glycoprotein C-negative phenotypes of herpes simplex virus type 1 mutants selected with a virus-neutralizing monoclonal antibody. J Virol 58: 281–289

    PubMed  CAS  Google Scholar 

  • Hope RG, Palfreyman J, Suh M, Marsden HS (1982) Sulphated glycoproteins induced by herpes simplex virus. J Gen Virol 58: 399–415

    PubMed  CAS  Google Scholar 

  • Huemer HP, Broker M, Larcher C, Lambris JD, Dierich MP (1989) The central segment of Herpes simplex virus type 1 glycoprotein C (gC) is not involved in C3b binding: Demonstration by using monoclonal antibodies and recominant gC expressed in Escherichia coli. J Gen Virol 70: 1571–1578

    PubMed  CAS  Google Scholar 

  • Huemer HP, Menzel HJ, Potratz D, Brake B, Falke D, Utermann G, Dierich MP (1988) Herpes simplex virus binds to human serum lipoprotein. Intervirology 29: 68–76

    PubMed  CAS  Google Scholar 

  • Johnson DC, Feenstra V (1987) Identification of a novel herpes simplex virus type 1-induced glycoprotein which complexes with gE and binds immunoglobulin. J Virol 61: 2208–2216

    PubMed  CAS  Google Scholar 

  • Johnson DC, Spear PG (1983) O-linked oligosaccharides are acquired by herpes simplex virus glycoproteins in the Golgi apparatus. Cell 32: 987–997

    PubMed  CAS  Google Scholar 

  • Johnson DC, McDermott MR, Chrisp C, Glorioso JC (1986) Pathogenicity in mice of herpes simplex virus type 2 mutants unable to express glycoprotein C. J Virol 58: 36–42

    PubMed  CAS  Google Scholar 

  • Johnson DC, Frame MC, Ligas MW, Cross AM, Stow ND (1988) Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gl. J Virol 62: 1347–1354

    PubMed  CAS  Google Scholar 

  • Joiner K, Hieny S, von Kirchhoff L, Sher A (1985) gp72, the 72 kilodalton glycoprotein, is the membrane acceptor site for C3 on Trypanosoma cruz. epimastigotes. J Exp Med 161: 1196–1212

    PubMed  CAS  Google Scholar 

  • Joiner K, Sher A, Gaither T, Hammer C (1986) Evasion of alternative complement pathway by Trypanosoma cruz. results from inefficient binding of factor B. Proc Natl Acad Sci USA 83: 6593–6597

    PubMed  CAS  Google Scholar 

  • Joiner KA, Dias da Silva W, Rimoldi MT, Hammer CH, Sher A, Kipnis TL (1988) Biochemical characterization of a factor produced by trypomastigotes of Trypanosoma cruz. that accelerates the decay of complement C3 convertases. J Biol Chem 263(23): 11327–11336

    PubMed  CAS  Google Scholar 

  • Kipnis TL, David JD, Alper CA, Sher A, Dias da Silva W (1981) Enzymatic treatment transforms trypomastigotes of Trypanosoma cruz. into activators of the alternative complement pathway and potentiates their uptake by macrophages. Proc Natl Acad Sci USA 78(1): 602–605

    PubMed  CAS  Google Scholar 

  • Kipnis TL, Tambourgi DV, Sucupira M, Dias da Silva W (1986) Effect of Trypanosoma cruz. membrane components on the formation of the classical pathway C3 convertase. Braz J Med Biol Res 19(2): 271–278

    PubMed  CAS  Google Scholar 

  • Kotwal GJ, Moss B (1988) Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. Nature 335: 176–178

    PubMed  CAS  Google Scholar 

  • Kubota Y, Gaither TA, Cason J, O’Shea JJ, Lawley TL (1987) Characterization of the C3 receptor induced by herpes simplex virus type 1 infection of human epidermal, endothelial, and A431 cells. J Immunol 138: 1137–1142

    PubMed  CAS  Google Scholar 

  • Lambris JD (1988) The multifunctional role of C3, the third component of complement. Immunol Today 9: 387–393

    PubMed  CAS  Google Scholar 

  • Lawler J, Hynes RO (1986) The structure of human thrombospondin, an adhesive glycoprotein with multiple calcium-binding sites and homologies with several different proteins. J Cell Biol 103: 1635–1648

    PubMed  CAS  Google Scholar 

  • Linehan L, Wadsworth E, Calderone RA (1988) Candida albican. C3d-receptor, isolated by using a monoclonal antibody. Infect Immun 56(8): 1981–1986

    PubMed  CAS  Google Scholar 

  • Little SP, Jofre JT, Courtney RJ, Schaffer PA (1981) A virion-associated glycoprotein essential for infectivity of herpes simplex virus type 1. Virology 115: 149–160

    PubMed  CAS  Google Scholar 

  • Machado AJ, Gazzinelli G, Pellegrino J, Dias da Silva W (1975) Schistosoma manson.: the role of the complement C3 activating system in the cercaricidal action of normal serum. Exp Parasitol 38: 20

    PubMed  CAS  Google Scholar 

  • Marikovsky M, Levi-Schaffer F, Arnon A, Fishelson Z (1986) Schistosoma mansoni. killing of transformed schistosomula by the alternative pathway of human complement. Exp Parasitol 61/1: 86–90

    PubMed  CAS  Google Scholar 

  • Marikosvky M, Arnon R, Fishelson Z (1988a) Proteases secreted by transforming schistosomula of Schistosoma manson. promote resistance to killing by complement. J Immunol 141(1): 273–278

    Google Scholar 

  • Marikovsky M, Fishelson Z, Arnon R (1988b) Purification and characterization of proteases secreted by transformed schistosomula of Schistosoma manson.. Mol Biochem Parasitol 1: 45–54

    Google Scholar 

  • Marlin SD, Holland TC, Levine M, Glorioso JC (1985) Epitopes of herpes simplex virus type 1 glycoprotein gC are clustered in two distinct antigenic sites. J Virol 53: 128–136

    PubMed  CAS  Google Scholar 

  • Mayes JT, Schreiber RD, Cooper Nr (1984) Development and application of an enzyme-linked immunosorbent assay for the quantitation of alternative complement pathway activation in human serum. J Clin Invest 73: 160–170

    PubMed  CAS  Google Scholar 

  • McConnell I, Klein G, Lint TF, Lachmann PJ (1978) Activation of the alternative complement pathway by human B cell lymphoma lines is associated with Epstein Barr virus transformation of the cells. Eur J Immunol 8: 453–458

    PubMed  CAS  Google Scholar 

  • McCrae MA, Pennington TH (1978) Specific secretion of polypeptides from cells infected with vaccinia virus. J Virol 28: 828–834

    PubMed  CAS  Google Scholar 

  • McNearney TA, Odell C, Holers VM, Spear PG, Atkinson JP (1987) Herpes simplex virus glycoprotein gC-1 and gC-2 bind to the third component of complement and provide protection against complement-mediated neutralization of viral infectivity. J Exp Med 166: 1525–1535

    PubMed  CAS  Google Scholar 

  • Medof ME, Kinoshita T, Nussenzweig V (1984) Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med 160: 1558–1578

    PubMed  CAS  Google Scholar 

  • Mold C, Bradt BM, Nemerow GR, Cooper NR (1988a) Epstein-Barr virus regulates activation and processing of the third component of complement. J Exp Med 168: 949–969

    PubMed  CAS  Google Scholar 

  • Mold C, Bradt BM, Nemerow GR, Cooper NR (1988b) Activation of the alternative complement pathway by EBV and the viral envelope glycoprotein, gp350. J Immunol 140: 3867–3874

    PubMed  CAS  Google Scholar 

  • Morse LS et al. (1978) Anatomy of HSV DNA. XL mapping of viral genes by analysis of polypeptides and functions specified by HSV-1 × HSV-2 recombinants. J Virol 26:389–410

    PubMed  CAS  Google Scholar 

  • Nemerow GR, Mold C, Keivens Schwend V, Tollefson V, Cooper NR (1978) Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d.J Virol 61: 1416–1420

    Google Scholar 

  • Nicholson-Weiler A, Bürge J, Fearon DT, Weller PF, Austen KF (1982) Isolation of a human erythrocyte membrane glycoprotein with decay-accelerating activity of C3 convertases of the complement system. J Immunol 129: 184–189

    Google Scholar 

  • Noble AG, Lee G-Y, Sprague R, Parish ML, Spear PG (1983) Anti-gD monoclonal antibodies inhibit cell fusion induced by herpes simplex virus type 1. Virology 129: 218–224

    PubMed  CAS  Google Scholar 

  • Nogueira N, Bianco C, Cohen Z (1975) Studies on the selective lysis and purification of Trypanosoma cruz.. J Exp Med 142: 224–229

    PubMed  CAS  Google Scholar 

  • Norrild B (1985) Humoral response to herpes simplex virus infections. In: Roizman B, Lopez C (eds) Immunobiology and prophylaxis of human herpes infections. The herpes viruses, vol 4. Plenum, New York, pp 69–86

    Google Scholar 

  • Nussenzweig V, Nussenzweig RS (1985) Circumsporozoite proteins of malaria parasites. Cell 42: 401–403

    PubMed  CAS  Google Scholar 

  • Olofsson S, Sjöblom I, Lundström M, Jeansson S, Lycke E (1983) Glycoprotein C of herpes simplex virus type 1: characterization of O-linked oligosaccharides. J Gen Virol 64:2735–2747

    PubMed  CAS  Google Scholar 

  • Ottesen EA, Stanley AM, Gelfand JA, Gadek JE, Frank MM, Nash TE, Cheever AW (1977) Immunoglobulin and complement receptors on human eosinophils and their role in cell adherence to schistosomules. Am J Trop Med Hyg 26: 134–141

    PubMed  CAS  Google Scholar 

  • Ouaissi MA, Santoro F, Capron A (1980a) Schistosoma manson.: ultrastructural damage due to complement on schistosomula in vitro. Exp Parasitol 50: 74–82

    PubMed  CAS  Google Scholar 

  • Ouaissi MA, Santoro F, Capron A (1980b) Interaction between Schistosoma manson. and the complement system. Receptors for C3b on cercariae and schistosomula. Immunol Lett 1: 197–210

    Google Scholar 

  • Ouaissi MA, Auriault C, Santoro F, Capron A (1981) Interaction between Schistosoma manson. and the complement system: role of the IgG Fc peptides in the activation of the classical pathway by schistosomula. J Immunol 127(4): 1556–1559

    PubMed  CAS  Google Scholar 

  • Ozaki LS, Svec P, Nussenzweig RS, Nussenzweig V, Godson GN (1983) Structure of the Plasmodium knowles. gene coding for the circumsporozoite protein. Cell 34: 815–822

    PubMed  CAS  Google Scholar 

  • Pereira L, Dondero DV, Gallo D, Devlin V, Woodie JD (1982) Serologie analysis of herpes simplex virus types 1 and 2 with monoclonal antibodies. Infect Immun 35: 363–367

    PubMed  CAS  Google Scholar 

  • Ramalho-Pinto FJ, McLaren DJ, Smithers SR (1978) Complement-mediated killing of schistosomula of Schistosoma manson. by rat eosinophils in vitro. J Exp Med 147: 147–156

    PubMed  CAS  Google Scholar 

  • Reid KBM, Bentley DR, Campbell RD, Chung LP, Sim RB, Kristensen T, Tack BF (1986) Complement system proteins which interact with C3b or C4b. Immunol Today 7:230–234

    CAS  Google Scholar 

  • Richman DD, Buckmaster EA, Bell SE, Hodgman C, Minson AC (1986) Identification of a new glycoprotein of herpes simplex virus type 1 and genetic mapping of the gene that codes for it. J Virol 57: 647–655

    PubMed  CAS  Google Scholar 

  • Rimoldi MT, Sher A, Hieny S, Lituchy A, Hammer CH, Joiner K (1988) Developmentally regulated expression by Trypanosoma cruz. of molecules that accelerate the decay of complement C3 convertases. Proc Natl Acad Sci USA 85: 193–197

    PubMed  CAS  Google Scholar 

  • Rubio M (1956) Actividad litica de sueros normales sobre formas de cultivo y sanguineas de Trypanosoma cruzi. Bol Chil Parasitol 9: 62–69

    Google Scholar 

  • Russell DG, Wright SD (1988) Complement receptor type 3 (CR3) binds to an Arg-Gly-Asp-containing region of the major surface glycoprotein, gp63, of Leishmani. promastigote. J Exp Med 168: 279–292

    PubMed  CAS  Google Scholar 

  • Samuelson JC, Caulfield JP (1985) The cercarial glycocalyx of Schistosoma manson.. J Cell Biol 100: 1423–1434

    PubMed  CAS  Google Scholar 

  • Samuelson JC, Caulfield JP (1986) Cercarial glycocalyx of Schistosoma manson. activates human complement. Infect Immun 51/1: 181–186

    PubMed  CAS  Google Scholar 

  • Santoro F, Lachmann PJ, Capron A, Capron M (1979) Activation of complement by Schistosoma manson. schistosomula: killing of parasites by the alternative pathway and requirement of IgG for classical pathway activation. J Immunol 123(4):1551–1557

    PubMed  CAS  Google Scholar 

  • Santoro F, Ouaissi MA, Pestel J, Capron A (1980) Interaction between Schistosoma manson. and the complement system: binding of Clq to schistosomula. J Immunol 124(6): 2886–2891

    PubMed  CAS  Google Scholar 

  • Schulz TF, Dierich MP, Yefenof E, Klein G (1980) C3-activating proteases on human lymphoblastoid cells superinfected with Epstein-Barr virus. Cell Immunol 51: 168–172

    PubMed  CAS  Google Scholar 

  • Scidel-Dugan C, Ponce de Leon M, Friedman HM, Fries LF, Frank MM, Cohen GH, Eisenberg RJ (1988) C3b receptor activity on transfected cells expressing glycoprotein C of herpes simplex virus types 1 and 2. J Virol 62: 4027–4036

    Google Scholar 

  • Sher A, Hieny S, Joiner K (1986) Evasion of the alternative complement pathway by metacyclic trypomastigotes of Trypanosoma cruz.: dependence on the developmentally regulated synthesis of surface protein and N-linked carbohydrate. J Immunol 137: 2961–2967

    PubMed  CAS  Google Scholar 

  • Sixbey JW, Davis DS, Young LS, Hutt-Fletcher L, Tedder TF, Rickinson AB (1987) Human epithelial cell expression of an Epstein-Barr virus receptor. J Gen Virol 63: 805–811

    Google Scholar 

  • Sjöblom I, Lundström M, Sjögren-Jansson E, Glorioso JC, Jeansson S, Olofsson S (1987) Demonstration of highly carbohydrate dependent epitopes in the herpes simplex virus type 1-specified glycoprotein C. J Gen Virol 68: 545–554

    PubMed  Google Scholar 

  • Smiley ML, Friedman HM (1985) Binding of complement component C3b to glycoprotein C is modulated by sialic acid on herpes simplex virus type 1-infected cells. J Virol 55:857–861

    PubMed  CAS  Google Scholar 

  • Smiley ML, Hoxie JA, Friedman HM (1985) Herpes simplex virus type 1 infection of endothelial, epithelial and fibroblast cells induces a receptor for C3b. J Immunol 134: 2673–2678

    PubMed  CAS  Google Scholar 

  • Spear PG (1984) Glycoproteins specified by herpes simplex virus. In: Roizman B (ed) The herpesviruses, vol 3. Plenum, New York, pp 315–356

    Google Scholar 

  • Spear PG (1985) Antigenic structure of herpes simplex viruses. In: Van Regenmortel MHV, Neurath AR (eds) Immunochemistry of viruses; the basis for serodiagnosis and vaccines. Elsevier Science, Amsterdam, pp 425–446

    Google Scholar 

  • Stanley HA, Mayes JT, Cooper NR, Reese RT (1984) Complement activation by the surface of Plasmodium falciparu. infected erythrocytes. Mol Immunol 21: 145–150

    PubMed  CAS  Google Scholar 

  • Swain MA, Peet RW, Galloway DA (1985) Characterization of the gene encoding herpes simplex virus type 2 glycoprotein C and comparison with the type 1 counterpart. J Virol 53: 561–569

    PubMed  CAS  Google Scholar 

  • Tarleton RL, Kemp WM (1981) Demonstration of IgG-Fc and C3 receptors on adult Schistosoma manson.. J Immunol 126(1): 379–384

    PubMed  CAS  Google Scholar 

  • Tavares CAP, Gazzinelli G, Mota-Santos TA, Dias da Silva W (1978) Schistosoma manson.: complement mediated cytotoxic activity in vitro and effect of decomplementation on acquired immunity in mice. Exp Parasitol 46: 145–151

    PubMed  CAS  Google Scholar 

  • Torpier G, Capron A, Ouaissi MA (1979) Receptor for IgG(Fc) and human β2-microglobulin on.. mansoni schistosomula. Nature 278: 447–449

    PubMed  CAS  Google Scholar 

  • Venkatesan S, Gershowitz A, Moss B (1982) Complete nucleotide sequences of two adjacent early vaccinia virus genes located within inverted terminal repetitions. J Virol 44: 637–646

    PubMed  CAS  Google Scholar 

  • Wenske EA, Bratton MW, Courtney RJ (1982) Endo-β.-acetylglueosaminidase H sensitivity of precursors to herpes simplex virus type 1 glycoproteins gB and gC. J Virol 44: 241–248

    PubMed  CAS  Google Scholar 

  • Wright SD, Weitz JI, Huang AJ, Levin SM, Silverstein SC, Loike JD (1988) Complement receptor type three (CD 11b/CD 18) of human polymorphonuelear recognizes fibrinogen. Proc Natl Acad Sci USA 85: 7734–7738

    PubMed  CAS  Google Scholar 

  • Zezulak KM, Spear PG (1984) Mapping of the structural gene for the herpes simplex virus type 2 counterpart of herpes simplex virus type 1 glycoprotein C and identification of a mutant which does not express this glycoprotein. J Virol 49: 741–747

    PubMed  CAS  Google Scholar 

  • Zweig M, Showalter SD, Bladen SV, Heilman CJ, Hampar B (1983) Herpes simplex virus type 2 glycoprotein gF and type 1 glycoprotein gC have related antigenic determinants. J Virol 47: 185–192

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dierich, M.P., Huemer, H.P., Prodinger, W.M. (1990). C3 Binding Proteins of Foreign Origin. In: Lambris, J.D. (eds) The Third Component of Complement. Current Topics in Microbiology and Immunology, vol 153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74977-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74977-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74979-7

  • Online ISBN: 978-3-642-74977-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics