Advertisement

Abstract

During the past few years much progress has been made in the evaluation of various effects which contribute to the line shape of the Z. Some time ago the first order in α corrections [1,2] to the Z line shape were studied, even in such a way that experimental cuts could be incorporated [2]. It was clear from these studies that a theoretical assessment of higher order corrections would become necessary for an accurate comparison between theory and experiment. It is the purpose of this report to review the present situation and to give the most recent actual numbers for the line shape following from the standard model. This review can be considered as a continuation of work presented elsewhere [3,4]. We restrict ourselves to the ideal case of no experimental cuts. The motivation is that we first want to be sure what the expectations are for this case, before we introduce the additional problem of cuts. The formulae and numbers of this report can serve as a guideline for event generators, which should at least reproduce these results.

Keywords

Total Cross Section Line Shape Partial Width Initial State Radiation Electroweak Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Greco, G. Pancheri-Srivastava and Y. Srivastava, Nucl. Phys. B171 (1980) 118; E8197 (1982) 543.Google Scholar
  2. 2.
    F.Ä. Berends, R. Kleiss and S. Jadach, Nucl. Phys. B202 (1982) 63.CrossRefADSGoogle Scholar
  3. 3.
    F.Ä. Berends, G. Burgers, W. Hollik and W.L. van Neerven, Phys. Lett. B203 (1988) 177.CrossRefGoogle Scholar
  4. 4.
    G. Burgers in Polarization at LEP, CERN 88-06, P. 121, ed. by G. Alexander, G. Altarelli, A. Blonde!, G. Coignet, E. Keil, D.E. Plane and D. Treille.Google Scholar
  5. 5.
    F.A. Berends, G. Burgers, C. Mana, M. Martinez and W.L. van Neerven, Nucl. Phys. B301 (1988) 583.CrossRefADSGoogle Scholar
  6. 6.
    D.A. Ross and J.C. Taylor, Nucl. Phys. B51 (1973) 25;Google Scholar
  7. 7.
    D.Y. Bardin, P.C. Christova and O.M. Fedorenko, Nucl. Phys. 8175 (1980) 435; 3197 (1982) 1.CrossRefADSGoogle Scholar
  8. 8.
    M. Böhm, W. Hollik and H. Spiesberger, Fortschr. Phys. 34 (1986) 687.Google Scholar
  9. 9.
    F. Jegerlehner, Z.Phys. 32 (1986) 195.Google Scholar
  10. 10.
    W. de Boer, 10th Warsaw Symposium on Elementary Particles, Kazimierz (1987).Google Scholar
  11. 11.
    T.H. Chang, K.J.F. Gaemers and W.L. van Neerven, Nucl. Phys. B202 (1982) 407.CrossRefADSGoogle Scholar
  12. 12.
    W. Hollik, DESY 88–188 (1988).Google Scholar
  13. 13.
    F.Ä. Berends and Ä. Böhm in: High Energy Electron-Positron Physics, ed. by A. Ali and P. Söding, World Scientific, Singapore (1988).Google Scholar
  14. 14.
    P. Kalyniak, J.N. Ng and P. Zakarauskas, Phys.Rev. D29 (1984) 502.CrossRefADSGoogle Scholar
  15. 15.
    P. Kalyniak, J.N. Ng and P. Zakarauskas, Phys. Rev. D30 (1984) 123.CrossRefADSGoogle Scholar
  16. 16.
    F.A. Berends and R. Kleiss, Nucl. Phys. B260 (1985) 32.CrossRefADSGoogle Scholar
  17. 17.
    E. Franco in Physics at LEP, CERN 86-02, p. 187, ed. by J. Ellis and R. Peccei.Google Scholar
  18. 18.
    W. Beenakker and W. Hollik, Z. Phys. C40 (1988) 141.Google Scholar
  19. 19.
    A.A. Akhundov, D.Y. Bardin and T. Riemann, Nucl.Phys. B276 (1986) 1.CrossRefADSGoogle Scholar
  20. 20.
    D.C. Kennedy, B.W. Lynn and C.J.-C. Im, SLAC-PUB 4128 (1988).Google Scholar
  21. 21.
    W. Wetzel, Nucl.Phys. B227 (1983) 1; CERN 86-02 (1986), 40.Google Scholar
  22. 22.
    W. Beenakker, F.A. Berends and S. van der Marek, to be published.Google Scholar
  23. 23.
    D. Bardin, M. Bilenky, T. Riemann and M. Sachwitz, to be published; T. Riemann, these Proceedings.Google Scholar
  24. 24.
    W. Beenakker and W. Hollik, in ECFA Workshop on LEP 200, CERN 87-08, p. 185, ed. by A. Böhm and W. Hoogland.Google Scholar
  25. 25.
    D.Y. Bardin, A. Leike, T. Riemann and M. Sachwitz, Phys. Lett. B2Q6 (1988) 539.Google Scholar
  26. 26.
    D.Y. Bardin, O.M. Fedorenko, T. Riemann, Dubna preprint E2-87-663;Google Scholar
  27. 27.
    S. Jadach, J.H. Kühn, R.G. Stuart and Z. Was, Z. Phys. C38 (1988) 609.Google Scholar
  28. 28.
    F.A. Berends, G. Burgers and W.L. van Neerven, Nucl. Phys. B297 (1988) 429; E Nucl. Phys. B304 (1988) 921.CrossRefGoogle Scholar
  29. 29.
    R. Barbieri, J.A. Mignaco and E. Remiddi, Nuovo Cim. 1A (1972) 824, 865.CrossRefADSGoogle Scholar
  30. 30.
    A. Devoto and D.W. Duke, Riv. Nuovo Com. 7, No. 6 (1984).Google Scholar
  31. 31.
    E.A. Kuraev and V.S. Fadin, Sov. J. Nucl. Phys. 41 (1985) 466.Google Scholar
  32. 32.
    G. Altarelli and G. Martinelli, Yellow Report CERN 86-02 (1986) 47.Google Scholar
  33. 33.
    O. Nicrosini and L. Trentadue, Phys. Lett. B196 (1987) 551.CrossRefGoogle Scholar
  34. 34.
    V.S. Fadin and V.S. Khoze, Novosibirsk preprint 87-157.Google Scholar
  35. 35.
    R.N. Cahn, Phys. Rev. D36 (1987) 2666.ADSGoogle Scholar
  36. 36.
    A. Borelli, M. Consoli, L. Maiani and R. Sisto, private communication and to be published.Google Scholar
  37. 37.
    F. Aversa and M. Greco, private communication and to be published.Google Scholar
  38. 38.
    F.A. Berends and R. Kleiss, Nucl. Phys. B177 (1981) 237.CrossRefADSGoogle Scholar
  39. 39.
    D.R. Yennie, Phys. Rev. Lett. 34 (1975) 239; J.D. Jackson and D.L. Scharre, Nucl. Instr. 128 (1975) 13; M. Greco, G. Pancheri-Srivastava and Y. Srivastava, Nucl. Phys. B101 (1975)234; F.A. Berends and G.J. Komen, Nucl. Phys. B115 (1976) 114.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • F. A. Berends
    • 1
  1. 1.Instituut-LorentzUniversity of LeidenLeidenThe Netherlands

Personalised recommendations