Skip to main content

Theoretical studies on carbon and silicon clusters: comparison of the structures and stabilities of neutral and ionic forms

  • Conference paper
Small Particles and Inorganic Clusters
  • 172 Accesses

Abstract

Optimized molecular geometries and electronic structures are determined for neutral, positively charged, and negatively charged carbon and silicon clusters containing up to ten atoms. The effects of polarization functions and electron correlation are included in these claculations. Carbon clusters have linear or monocyclic ground state geometries whereas silicon clusters containing five or more atoms have three-dimensional ground state structures. Neutral C4, C6 and C8 all have linear and monocyclic isomers of comparable stability whereas the ionic forms appear to be generally more stable as linear geometrical arrangements. In the case of neutral and positively charged carbon clusters, the odd-numbered clusters are significantly more stable than the adjacent even-numbered clusters whereas the opposite order of stability occurs for the negative ions. This is due to the large values of the electron affinities of the linear forms of even-numbered clusters such as C4 and C6. The relative stabilities of silicon clusters does not change with the charge state of the clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, W.L., Freeman, R.R., Raghavachari, K., Schlüter, M.: Science 235, 860 (1987).

    Article  ADS  Google Scholar 

  2. Rohlfing, E.A., Cox, D.M., Kaldor, A.: J. Chem. Phys. 81, 3322 (1984).

    Article  ADS  Google Scholar 

  3. Bloomfield, L.A., Geusic, M.E., Freeman, R.R., Brown, W.L.: Chem. Phys. Lett. 121, 33 (1985).

    Article  ADS  Google Scholar 

  4. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: Nature (London) 318, 162 (1985).

    Article  ADS  Google Scholar 

  5. Yang, S., Taylor, K.J., Craycraft, M.J., Conceicao, J., Pettiette, C.L., Cheshnovsky, O., Smalley, R.E.: Chem. Phys. Lett. 144, 431 (1988).

    Article  ADS  Google Scholar 

  6. Bloomfield, L.A., Freeman, R.R., Brown, W.L.: Phys. Rev. Lett. 54, 2246 (1985).

    Article  ADS  Google Scholar 

  7. Martin, T.P., Schaber, H.: J. Chem. Phys. 83, 855 (1985).

    Article  ADS  Google Scholar 

  8. Liu, Y., Zhang, Q.-L., Tittle, F.K., Curl, R.F., Smalley, R.E.: J. Chem. Phys. 85, 7434 (1986).

    Article  ADS  Google Scholar 

  9. Cheshnovsky, O., Yang, S.H., Pettiette, C.L., Craycraft, M.J., Liu, Y., Smalley, R.E.: Chem. Phys. Lett. 138, 119 (1987).

    Article  ADS  Google Scholar 

  10. Whiteside, R.A., Krishnan, R., DeFrees, DJ., Pople, J.A., v.R. Schleyer, P.v.R.: Chem. Phys. Lett. 78, 538 (1981).

    Article  ADS  Google Scholar 

  11. Ewing, D.W., Pfeiffer, G.V.: Chem. Phys. Lett. 134, 413 (1987).

    Article  ADS  Google Scholar 

  12. Pacchioni, G., Koutecky, J.: J. Chem. Phys. 88, 1066 (1988).

    Article  ADS  Google Scholar 

  13. Raghavachari, K., Whiteside, R.A., Pople, J.A.: J. Chem. Phys. 85, 6623 (1986).

    Article  ADS  Google Scholar 

  14. Raghavachari, K., Binkley, J.S.: J. Chem. Phys. 87, 2191 (1987).

    Article  ADS  Google Scholar 

  15. Balasubramanian, K.: Chem. Phys. Lett. 135, 283 (1987).

    Article  ADS  Google Scholar 

  16. Pacchioni, G., Koutecky, J.: J. Chem. Phys. 84, 3301 (1986).

    Article  ADS  Google Scholar 

  17. Tománek, D., Schlüter, M.: Phys. Rev. Lett. 56, 1055 (1986).

    Article  ADS  Google Scholar 

  18. Ballone, P., Andreoni, W., Car, R., Parrinello, M.: Phys. Rev. Lett. 60, 271 (1988).

    Article  ADS  Google Scholar 

  19. Phillips, J.C.: Chem. Rev. 86, 619 (1986).

    Article  Google Scholar 

  20. Raghavachari, K., Logovinsky, V.: Phys. Rev. Lett. 55, 2853 (1985).

    Article  ADS  Google Scholar 

  21. Raghavachari, K.: J. Chem. Phys. 83, 3520 (1985).

    Article  ADS  Google Scholar 

  22. Raghavachari, K.: ibid, 84, 5672 (1986).

    Article  ADS  Google Scholar 

  23. Raghavachari, K., Rohlfing, C.M.: Chem. Phys. Lett. 143, 428 (1988).

    Article  ADS  Google Scholar 

  24. For a discussion of the methods and basis sets used in this paper, see: Hehre, W.J., Radom, L., Schleyer, P.v.R., Pople, J.A.: Ab Initio Molecular Orbital Theory. New York: John Wiley 1986.

    Google Scholar 

  25. Nimlos, M.R., Harding, L.B., Ellison, G.B.: J. Chem. Phys. 87, 5116 (1987).

    Article  ADS  Google Scholar 

  26. Faibis, A., Kanter, E.P., Tack, L.M., Bakke, E., Zabransky, B.J.: J. Phys. Chem. 91, 6445 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Raghavachari, K. (1989). Theoretical studies on carbon and silicon clusters: comparison of the structures and stabilities of neutral and ionic forms. In: Chapon, C., Gillet, M.F., Henry, C.R. (eds) Small Particles and Inorganic Clusters. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74913-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74913-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74915-5

  • Online ISBN: 978-3-642-74913-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics