Skip to main content

Toward an Autecology of Bacterioplankton

  • Chapter

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

The purpose of this chapter on bacterioplankton is to place these procaryotes within the frame of reference commonly used to study and understand the eucaryotic plankton. The study of bacterioplankton is very recent compared to that of phyto- and zooplankton. In the last few years quantitative evidence of the importance of bacterioplankton in carbon cycling in lakes is accumulating at a fast rate. It now appears that bacterioplankton production constitutes around 30 percent of the total production of phytoplankton (Cole et al., 1988). However, because bacteria are very small and morphologically not very diverse, very little is known about their species composition in situ (Staley, 1980; Atlas, 1983).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J. 1985. The identification and interpretation of guild structures in ecological communities. Journal of Animal Ecology 54: 43–59.

    Article  Google Scholar 

  • Alexander, M. 1971. Microbial Ecology J. Wiley and Sons, New York. 511 pp.

    Google Scholar 

  • Atlas, R.M. 1983. Diversity of microbial communities. Advances in Microbial Ecology 7: 1–47.

    Google Scholar 

  • Azam, F., Fenchel, T., Field, J.G., Grey, J.S., Meyer-Reil, L.-A., and Thingstad, F. 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.

    Article  Google Scholar 

  • Bell, R.T., Ahlgren, G.M., and Ahlgren, I. 1983. Estimating bacterioplankton production by measuring [3H]thymidine incorporation in a eutrophic Swedish lake. Applied and Environmental Microbiology 45: 1709–1721.

    CAS  PubMed  Google Scholar 

  • Biebl, H. and Pfennig, N. 1979. CO2 fixation by anaerobic phototrophic bacteria in lakes, a review. Ergebnisse der Limnologie 12: 48–58.

    Google Scholar 

  • Bird, D.F. and Kalff, J. 1987. Algal phagotrophy: Regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnology and Oceanography 32: 277–284.

    Article  CAS  Google Scholar 

  • Bohlool, B.B. and Brock, T.D. 1974. Population ecology of Sulfolobus acidocaldarius. II. Immunoecological studies. Archiv für Microbiologic 97: 181–194.

    Article  CAS  Google Scholar 

  • Bohlool, B.B. and Schmidt, E.L. 1980. The immunofluorescence approach in microbial ecology. Advances in Microbial Ecology 4: 203–241.

    Google Scholar 

  • Borsheim, K.Y. and Anderson, S. 1987. Grazing and food size selection by crustacean zooplankton compared to production of bacteria and phytoplankton in a shallow Norwegian mountain lake. Journal of Plankton Research 9: 367–379.

    Article  Google Scholar 

  • Brock, T.D. 1971. Microbial growth rates in nature. Bacteriological Reviews 35: 39–58.

    CAS  PubMed  Google Scholar 

  • Brock, T.D. 1985. A Eutrophic Lake: Lake Mendota, Wisconsin. Springer-Verlag, New York. 308 pp.

    Book  Google Scholar 

  • Brock, T.D. 1987. The study of microorganisms in situ: progress and problems. Society for General Microbiology Special Symposium 41: 1–17.

    Google Scholar 

  • Brock, M.L. and Brock, T.D. 1968. The application of microautoradiographic techniques to ecological studies. Internationale Vereinigung für Theoretische und Angewandte Limnologie, Mittelungen no. 15, 29 pp.

    Google Scholar 

  • Brock, T.D. and Clyne, J. 1984. Significance of algal excretory products for growth of epilimnetic bacteria. Applied and Environmental Microbiology 47: 731–734.

    CAS  PubMed  Google Scholar 

  • Caumette, P., Pagano, M., and Saint-Jean, L. 1983. Répartition verticale du phytoplancton, des bactéries et du zooplancton dans un milieu stratifié en Baie de Biétri (Lagune Ebrié, Cote d’Ivoire). Relations trophiques. Hydrobiologia 106: 135–148.

    Article  Google Scholar 

  • Cole, J.J. 1982. Interactions between bacteria and algae in aquatic ecosystems. Annual Review of Ecology and Systematics 13: 291–314.

    Article  Google Scholar 

  • Cole, J.J., Pace, M.L., and Findlay, S. 1988. Prediction of bacterial production in fresh and saltwater ecosystems: an overview. Marine Ecology Progress Series 43: 1–10.

    Article  Google Scholar 

  • Dyer, B.D., Gaju, N., Pedrós-Alió, C., Esteve, I., and Guerrero, R. 1986. Ciliates from a freshwater sulfuretum. Biosystems 19: 127–135.

    Article  CAS  PubMed  Google Scholar 

  • Edlund, A., Nichols, P.D., Roffiey, R., and White, D.C. 1985. Extractable and lipopolysaccharide fatty acid and hydroxy acid profiles from Desulfovibrio species. Journal of Lipid Research 26: 982–988.

    CAS  PubMed  Google Scholar 

  • Fallon, R.D., Harrits, S., Hanson, R.S., and Brock, T.D. 1980. The role of methane in internal carbon cycling in Lake Mendota during summer stratification. Limnology and Oceanography 25: 357–360.

    Article  CAS  Google Scholar 

  • Fenchel, T., Perry, T., and Thane, A. 1977. Anaerobiosis and symbiosis with bacteria in free-living ciliates. Journal of Protozoology 24: 154–163.

    CAS  PubMed  Google Scholar 

  • Fliermans, C.B. and Schmidt, E.L. 1975. Autoradiography and immunofluorescence combined for autecological study of single cell activity with Nitrobacter as a model system. Applied Microbiology 30: 676–684.

    CAS  PubMed  Google Scholar 

  • Fuhrman, J. 1987. Close coupling between release and uptake of dissolved free amino acids in seawater studied by an isotope dilution approach. Marine Ecology Progress Series 37: 45–52.

    Article  CAS  Google Scholar 

  • Gibbons, R.J. and Van Houte, J. 1975. Bacterial adherence in oral microbial ecology. Annual Review of Microbiology 29: 19–44.

    Article  CAS  PubMed  Google Scholar 

  • Gophen, M., Cavari, B.Z., and Berman, T. 1974. Zooplankton feeding on differentially labelled algae and bacteria. Nature 247: 393–394.

    Article  Google Scholar 

  • Gorlenko, V.M., Dubinina, G.A., and Kuznetsov, S.I. 1983. The Ecology of Aquatic Microorganisms. E. Schweizerbart’sche Verlagsbuchhandlung (Nägle u. Obermiller ), Stuttgart. 252 pp.

    Google Scholar 

  • Goulder, P. 1977. Attached and free bacteria in an estuary with abundant suspended solids. Journal of Applied Bacteriology 43: 399–405.

    Article  Google Scholar 

  • Güde, H. 1986. Loss processes influencing growth of planktonic bacterial populations in Lake Constance. Journal of Plankton Research 8: 795–810.

    Article  Google Scholar 

  • Guerrero, R., Abella, C., and Miracle, M.R. 1978. Spatial and temporal distribution of bacteria in a meromictic lake basin: relationships with physicochemical parameters and zooplankton. Internationale Vereinigung für Theoretische und Angewandte Limnologie. Verhandlungen 20: 2264–2271.

    Google Scholar 

  • Guerrero, R., Montesinos, E., Pedrós-Alió, C., Esteve, I., Mas, J., van Gemerden, H., Hofman, P.A., and Bakker, J.F. 1985. Phototrophic sulfur bacteria in two Spanish lakes: vertical distribution and limiting factors. Limnology and Oceanography 30: 919–931.

    Article  CAS  Google Scholar 

  • Guerrero, R., Pedrós-Alió, C., Esteve, I., Mas, J., Chase, D., and Margulis, L. 1986. Predatory prokaryotes: predation and primary consumption evolved in bacteria. Proceedings of the National Academy of Sciences, U.S.A. 83: 2138–2142.

    Article  CAS  Google Scholar 

  • Guerrero, R., Esteve, I., Pedrós-Alió, C., and Gaju, N. 1987a. Predatory bacteria in prokaryotic communities. Annals of the New York Academy of Sciences 503: 238–250.

    Article  Google Scholar 

  • Guerrero, R., Pedrós-Alió, C., Esteve, I., and Mas, J. 1987b. Communities of phototrophic sulphur bacteria in lakes of the Spanish Mediterranean region. Acta Academie Aboensis 47: 125–151.

    Google Scholar 

  • Hobbie, J.E. 1979. An assessment of quantitative measurement of aquatic microbes. Ergebnisse der Limnologie 12: 59–63.

    Google Scholar 

  • Holben, W.H., Jansson, J.K., Chelm, B.K., and Tiedje, J.M. 1988. DNA probe method for the detection of specific microorganisms in the soil bacterial community. Applied and Environmental Microbiology 54: 703–711.

    CAS  PubMed  Google Scholar 

  • Hoppe, H. 1976. Analysis of actively metabolizing bacterial populations with the autoradiographic method, pp. 179–197, in Reinheimer, G. (editor), Microbial Ecology of a Brackish Water Environment. Springer-Verlag, Berlin.

    Google Scholar 

  • Ingvorsen, K., Zeikus, J.G., and Brock, T.D. 1983. Dynamics of bacterial sulfate reduction in a eutrophic lake. Applied and Environmental Microbiology 42: 1029–1036.

    Google Scholar 

  • Jones, J.G. 1979. A Guide to Methods for Estimating Microbial Numbers and Biomass in Freshwater. Freshwater Biological Association Scientific Publication no. 39, Ambleside, Cumbria. 112 pp.

    Google Scholar 

  • Jones, J.G., Simon, B.M., and Cunningham, C. 1983. Bacterial uptake of algal extracellular products: an experimental approach. Journal of Applied Bacteriology 54: 355–365.

    Article  Google Scholar 

  • Jones, J.G. 1987. Diversity of freshwater microbiology. Society for General Microbiology Special Symposium 41: 235–259.

    Google Scholar 

  • Jorgensen, N.O.G. 1987. Free amino acids in lakes: concentrations and assimilation rates in relation to phytoplankton and bacterial production. Limnology and Oceanography 32: 97–111.

    Article  Google Scholar 

  • Karl, D.M. 1986. Determination of in situ microbial biomass, viability, metabolism, and growth, pp. 85–176, in Poindexter, J.S. and Leadbetter, E.R. (editors), Bacteria in Nature, volume 2. Plenum Press, New York.

    Google Scholar 

  • Kelly, D.P. 1981. Introduction to the chemolithoautotrophic bacteria, pp. 997–1004, in Starr, M.P., Stolp, H., Trüper, H.G., Balows, A., and Schlegel, H.G. (editors), The Prokaryotes, volume 1. Springer-Verlag, Berlin.

    Google Scholar 

  • Kirchman, D. 1983. The production of bacteria attached to particles suspended in a freshwater pond. Limnology and Oceanography 28: 858–872.

    Article  Google Scholar 

  • Kirchman, D. and Mitchell, R. 1982. Contribution and particle-bound bacteria to total microheterotrophic activity in five ponds and two marshes. Applied and Environmental Microbiology 43: 200–209.

    CAS  PubMed  Google Scholar 

  • Kjelleberg, S., Marshall, K.C., and Hermansson, M. 1985. Oligotrophic and copiotrophic marine bacteria—observations related to attachment. FEMS Microbiology Ecology 31: 89–96.

    Google Scholar 

  • Krebs, C.J. 1985. Ecology. The Experimental Analysis of Distribution and Abundance, 3rd edition. Harper and Row, New York.

    Google Scholar 

  • Kuenen, J.G., Robertson, L.A., and van Gemerden, H. 1985. Microbial interactions among aerobic and anaerobic sulfur-oxidizing bacteria. Advances in Microbial Ecology 8: 1–60.

    Article  CAS  Google Scholar 

  • Lane, D.J., Pace, B., Olsen, G.J., Stahl, D.A., Sogin, M.L., and Pace, N.R. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences U.S.A. 82: 6955–6959.

    Article  CAS  Google Scholar 

  • Lewis, W.M., Frost, T., and Moore, D. 1986. Studies of planktonic bacteria in Lake Valencia, Venezuela. Archiv für Hydrobiologie 106: 289–305.

    Google Scholar 

  • Lowell, C.R. and Konopka, A. 1985. Thymidine incorporation by free-living and particle-bound bacteria in a eutrophic dimictic lake. Applied and Environmental Microbiology 49: 501–504.

    Google Scholar 

  • Martz, R.F., Sebacher, D.K., and White, D.C. 1983. Biomass measurements of methane- forming bacteria in environmental samples. Journal of Microbiological Methods 1: 53–61.

    Article  CAS  PubMed  Google Scholar 

  • Mclnerney, M.J. 1986. Transient and persistent associations among prokaryotes, pp. 293–338, in Poindexter, J.S. and Leadbetter, E.R. (editors), Bacteria in Nature, volume 2. Plenum Press, New York.

    Google Scholar 

  • Melack, J.M. 1985. Interactions of detrital particulates and plankton. Hydrobiologia 125: 209–220.

    Article  Google Scholar 

  • Meyer-Reil, L.-A. 1978. Autoradiography and epifluorescence microscopy combined for the determination of number and spectrum of actively metabolizing bacteria in natural waters. Applied and Environmental Microbiology 36: 506–512.

    CAS  PubMed  Google Scholar 

  • Montesinos, E., Guerrero, R., Abellà, C., and Esteve, I. 1983. Ecology and physiology of the competition for light between Chlorobium limicola and Chlorobium phaeobacteroides in natural habitats. Applied and Environmental Microbiology 46: 1007–1016.

    CAS  PubMed  Google Scholar 

  • Mosser, J.L., Mosser, A.G., and Brock, T.D. 1974a. Population ecology of Sulfolobus acidocaldarius. I. Temperature strains. Archiv für Microbiologic 97: 169–179.

    Article  CAS  Google Scholar 

  • Mosser, J.L., Bohlool, B.B., and Brock, T.D. 1974b. Growth rates of Sulfolobus acidocaldarius in nature. Journal of Bacteriology 118: 1075–1081.

    CAS  PubMed  Google Scholar 

  • Muyzer, G., de Bruyn, A.C., Schmedding, D.J.M., Bos, P., Westbroek, P., and Kuenen, G.J. 1987. A combined immunofluorescence-DNA-fluorescence staining technique for enumeration of Thiobacillus ferrooxidans in a population of acidophilic bacteria. Applied and Environmental Microbiology 53: 660–664.

    CAS  PubMed  Google Scholar 

  • Newell, S.Y., Fallon, R.D., and Tabor, P.S. 1986. Direct microscopy of natural assemblages, pp. 1–48, in Poindexter, J.S. and Leadbetter, E.R. (editors), Bacteria in Nature, volume 2. Plenum Press, New York.

    Google Scholar 

  • Odum, E.P. 1971. Fundamentals of Ecology 3rd edition. Saunders, Philadelphia. 574 pp.

    Google Scholar 

  • Olsen, G.J., Lane, D.J., Giovannoni, S.J., and Pace, N.R. 1986. Microbial ecology and evolution: a ribosomal RNA approach. Annual Review of Microbiology 40: 337–365.

    Article  CAS  PubMed  Google Scholar 

  • Overbeck, J. 1979. Studies on heterotrophic functions and glucose metabolism of microplankton in Pluβsee. Ergebnisse der Limnologie 13: 56–76.

    CAS  Google Scholar 

  • Overbeck, J., Höfle, M.G., Krambeck, C, and Witzel, K.-P. (editors). 1984. Proceedings of the Second Workshop on Measurement of Microbial Activity in the Carbon Cycle of Aquatic Ecosystems. Ergebnisse der Limnologie, volume 19. E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart.

    Google Scholar 

  • Pace, N.R., Stahl, D.A., Lane, D.J., and Olsen, G.J. 1986. The analysis of natural microbial populations by ribosomal RNA sequences. Advances in Microbial Ecology 9: 1–55.

    CAS  Google Scholar 

  • Paerl, H.W. 1974. Bacterial uptake of dissolved organic matter in relation to detrital aggregation in marine and freshwater systems. Limnology and Oceanography 19: 966–972.

    Article  Google Scholar 

  • Paerl, H.W. 1978. Microbial organic carbon recovery in aquatic systems. Limnology and Oceanography 23: 927–935.

    Article  CAS  Google Scholar 

  • Paerl, H.W. and Kellar, P.E. 1978. Significance of bacterial-Anabaena (Cyanophyceae) associations with respect to nitrogen fixation in freshwater. Journal of Phycology 14: 254–260.

    Article  Google Scholar 

  • Parkin, T.B. and Brock, T.D. 1981. Photosynthetic bacterial production and carbon mineralization in a meromictic lake. Archiv für Hydrobiologie 91: 354–379.

    Google Scholar 

  • Pedrós-Alió, C. and Brock, T.D. 1982. Assessing biomass and production of bacteria in eutrophic Lake Mendota, Wisconsin. Applied and Environmental Microbiology 44: 203–218.

    PubMed  Google Scholar 

  • Pedrós-Alió, C. and Brock, T.D. 1983a. The impact of zooplankton feeding on the epilimnetic bacteria of a eutrophic lake. Freshwater Biology 13: 227–239.

    Article  Google Scholar 

  • Pedrós-Alió, C. and Brock, T.D. 1983b. The importance of attachment to particles for planktonic bacteria. Archiv für Hydrobiologie 98: 354–379.

    Google Scholar 

  • Pedrós-Alió, C., Montesinos, E., and Guerrero, R. 1983. Factors determining annual changes in bacterial photosynthetic pigments in holomictic Lake Cisó, Spain. Applied and Environmental Microbiology 46: 999–1006.

    PubMed  Google Scholar 

  • Pedrós-Alió, C, Abellà, C., and Guerrero, R. 1984. Influence of solar radiation, water flux and competition on biomass of phototrophic bacteria in Lake Cisó, Spain. Internationale Vereinigung für Theoretische und Angewandte Limnologie, Verhandlungen 22: 1097–1101.

    Google Scholar 

  • Pedrós-Alió, C., Gasol, J.M., and Guerrero, R. 1986. Mircobial ecology of sulfurous Lake Ciso, pp. 638–644, in Megusar, F. and Gantar, M. (editors), Perspectives in Microbial Ecology. Slovenian Society for Microbiology, Ljubljana, Yugoslavia.

    Google Scholar 

  • Pedrós-Alió, C., Gasol, J.M., and Guerrero, R. 1987. On the ecology of a Cryptomonas phaseolus population forming a metalimnetic bloom in Lake Cisó, Spain: Annual distribution and loss factors. Limnology and Oceanography 32: 285–298.

    Article  Google Scholar 

  • Pfennig, N. 1980. Syntrophic mixed cultures and symbiotic consortia with phototrophic bacteria: a review, pp. 127–131, in Gottschalk, G., Pfennig, N., and Werner, H. (editors), Anaerobes and Anaerobic Infections. Gustav Fischer, Stuttgart.

    Google Scholar 

  • Pomeroy, L.R. 1974. The ocean’s food web, a changing paradigm. BioScience 24: 499–504.

    Article  Google Scholar 

  • Pomeroy, L.R. 1984. Microbial processes in the sea: diversity in nature and science, pp. 1–33, in Hobbie, J.E. and Williams, P.J.LeB. (editors), Heterotrophic Activity in the Sea. Plenum Press, New York.

    Chapter  Google Scholar 

  • Porter, K.G. 1984. Natural bacteria as food resources for zooplankton, pp. 340–345, in Klug, M.J. and Reddy, C.A. (editors), Current Perspectives in Microbial Ecology. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Porter, K.G., Sherr, E.B., Sherr, B.F., Pace, M., and Sanders, R.W. 1985. Protozoa in planktonic food webs. Journal of Protozoology 32: 409–415.

    Google Scholar 

  • Reed, W.M. and Dugan, P.R. 1978. Distribution of Methylomonas methanica and Meth- ylosinus trichosporium in Cleveland Harbor as determined by an indirect fluorescent antibody-membrane filter technique. Applied and Environmental Microbiology 35: 422–430.

    CAS  PubMed  Google Scholar 

  • Riemann, B. 1985. Potential importance of fish predation and zooplankton grazing on natural populations of freshwater bacteria. Applied and Environmental Microbiology 50: 187–193.

    CAS  PubMed  Google Scholar 

  • Root, R.B. 1967. The niche exploitation pattern of the blue-gray gnatcatcher. Ecological Monographs 37: 317–350.

    Article  Google Scholar 

  • Rudd, J.W.M. and Hamilton, R.D. 1978. Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism. Limnology and Oceanography 23: 337–348.

    Article  CAS  Google Scholar 

  • Rudd, J.W.M. and Taylor, C.D. 1980. Methane cycling in aquatic environments. Advances in Aquatic Microbiology 2: 77–150.

    CAS  Google Scholar 

  • Schmidt, J.M. 1981. The genera Caulobacter and Asticcacaulis, pp. 466–476, in Starr, M.P., Stolp, H., Trüper, H.G., Balows, A., and Schlegel, H.G. (editors), The Prokaryotes, volume 1. Springer-Verlag, Berlin.

    Google Scholar 

  • Schmidt, J.M. and Starr, M.P. 1981. The Blastocaulis-Planctomyces group of budding and appendaged bacteria, pp. 496–504, in Starr, M.P., Stolp, H., Trüper, H.G., Balows, A., and Schlegel, H.G. (editors), The Prokaryotes, volume 1. Springer-Verlag, Berlin.

    Google Scholar 

  • Sherr, B.F. and Sherr, E.B. 1984. Role of heterotrophic protozoa in carbon and energy flow in aquatic ecosystems, pp. 412–423, in Klug, M.J. and Reddy, C.A. (editors), Current Perspectives in Microbial Ecology. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Sherr, B.F. and Sherr, E.B. 1987. High rates of consumption of bacteria by pelagic ciliates. Nature 325: 710–711.

    Article  Google Scholar 

  • Sieburth, J.M. 1979. Sea Microbes. Oxford University Press, New York. 491 pp.

    Google Scholar 

  • Simon, M. 1985. Specific uptake rates of amino acids by attached and free-living bacteria in a mesotrophic lake. Applied and Environmental Microbiology 49: 1254–1259.

    CAS  PubMed  Google Scholar 

  • Sommer, U., Gliwicz, Z.M., Lampert, W., and Duncan, A. 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106: 433–471.

    Google Scholar 

  • Sonea, S. 1988. A bacterial way of life. Nature 331: 216.

    Article  CAS  PubMed  Google Scholar 

  • Sorokin, Y.I. 1970. Interrelation between sulphur and carbon turnover in meromictic lakes. Archiv für Hydrobiologie 66: 391–446.

    Google Scholar 

  • Stahl, D.A., Lane, D.J., Olsen, G.J., and Pace, N.R. 1984. Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science 224: 409–411.

    Article  CAS  PubMed  Google Scholar 

  • Stahl, D.A., Lane, D.J., Olsen, G.J., and Pace, N.R. 1985. Characterization of a Yellowstone hot spring microbial community by 5S ribosomal RNA sequences. Applied and Environmental Microbiology 49: 1379–1384.

    CAS  PubMed  Google Scholar 

  • Staley, J.T. 1980. Diversity of aquatic heterotrophic bacterial communities, pp. 321–322, in Schlessinger, D. (editor), Microbiology-1980. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Staley, J.T. and Konopka, A. 1985. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annual Review of Microbiology 39: 321–346.

    Article  CAS  PubMed  Google Scholar 

  • Staley, J.T., Hirsch, P., and Schmidt, J.M. 1981. Introduction to budding and/or appendaged bacteria, pp. 451–455, in Starr, M.P., Stolp, H., Trüper, H.G., Balows, A., and Schlegel, H.G. (editors), The Prokaryotes, volume 1. Springer-Verlag, Berlin.

    Google Scholar 

  • Staley, J.T., Konopka, A.E., and Dalmasso, J.P. 1987. Spatial and temporal distribution of Caulobacter spp. in two mesotrophic lakes. FEMS Microbiology Ecology 45: 1–6.

    Article  Google Scholar 

  • Stanley, P.M. and Staley, J.T. 1977. Acetate uptake by aquatic bacterial communities measured by autoradiography and filterable radioactivity. Limnology and Oceanography 22: 26–37.

    Article  CAS  Google Scholar 

  • Stanley, P.M., Gage, M.A., and Schmidt, E.L. 1979. Enumeration of specific populations by immunofluorescence, pp. 46–55, in Costerton, J.W. and Colwell, R.R. (editors), Native Aquatic Bacteria. American Society for Testing and Materials Special Technical Publication no. 695, Philadelphia.

    Google Scholar 

  • Starr, M.P. and Schmidt, J.M. 1981. Prokaryote diversity, pp. 3–42, in Starr, M.P., Stolp, H., Trüper, H.G., Balows, A., and Schlegel, H.G. (editors), The Prokaryotes, volume 1. Springer-Verlag, Berlin.

    Google Scholar 

  • Steele, J.H. 1974. The Structure of Marine Ecosystems. Harvard University Press, Cambridge, Massachusetts. 128 pp.

    Google Scholar 

  • Stolp, H. and Starr, M.P. 1981. Principles of isolation, cultivation, and conservation of bacteria, pp. 133–175, in Starr, M.P., Stolp, H., Trüper, H.G., Balows, A., and Schlegel, H.G. (editors), The Prokaryotes, volume 1. Springer-Verlag, Berlin.

    Google Scholar 

  • Tabor, P.S. and Neihof, R.A. 1984. Direct determination of activities for microorganisms of Chesapeake Bay populations. Applied and Environmental Microbiology 48: 1012–1019.

    CAS  PubMed  Google Scholar 

  • Terborgh, J. and Robinson, S. 1986. Guilds and their utility in ecology, pp. 65–90, in Kikkawa, J. and Anderson, D.J. (editors), Community Ecology: Pattern and Process. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Torrella, F. and Morita, R.Y. 1981. Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater. Applied and Environmental Microbiology 41: 518–527.

    CAS  PubMed  Google Scholar 

  • Trüper, H.G. and Pfennig, N. 1981. Characterization and identification of the anoxygenic phototrophic bacteria, pp. 299–312, in Starr, M.P., Stolp, H., Trüper, H.G., Balows, A., and Schlegel, H.G. (editors), The Prokaryotes, volume 1. Springer-Verlag, Berlin.

    Google Scholar 

  • Turner, J.T. and Ferrante, J.G. 1979. Zooplankton fecal pellets in aquatic ecosystems. Bioscience 29: 670–677.

    Article  Google Scholar 

  • Van Bruggen, J.J.A., Stumm, C.K., and Vogels, G.D. 1983. Symbiosis of methanogenic bacteria and sapropelic protozoa. Archives of Microbiology 136: 89–95.

    Article  Google Scholar 

  • Van Es, F.B. and Meyer-Reil, L.-A. 1982. Biomass and metabolic activity of heterotrophic marine bacteria. Advances in Microbial Ecology 6: 111–170.

    Article  Google Scholar 

  • Van Es, F.B., Lanbroeck, H.J., and Veldkamp, H. 1984. Microbial ecology: an overview, pp. 1–33, in Codd, G.A. (editor), Aspects of Microbial Metabolism and Ecology. Society for General Microbiology Special Publication no. 11, Academic Press, London.

    Google Scholar 

  • Van Gemerden, H. and Beeftink, H.H. 1983. Ecology of phototrophic bacteria, pp. 146–185, in Ormerod, J.G. (editor), The Phototrophic Bacteria: Anaerobic Life in the Light. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Ward, B.B. 1984. Combined autoradiography and immunofluorescence for estimation of single cell activity by ammonium-oxidizing bacteria. Limnology and Oceanography 29: 402–410.

    Article  Google Scholar 

  • Ward, D.M. and Winfrey, M.R. 1985. Interactions between methanogenic and sulfate- reducing bacteria in sediments. Advances in Aquatic Microbiology 3: 142–179.

    Google Scholar 

  • Ward, D.M., Tayne, T.A., Anderson, K.L., and Bateson, M.M. 1987. Community structure and interactions among community members in hot spring cyanobacterial mats. Society for General Microbiology Special Symposium 41: 179–210.

    CAS  Google Scholar 

  • White, D.C. 1986. Quantitative physicochemical characterization of bacterial habitats, pp. 177–203, in Poindexter, J.S. and Leadbetter, E.R. (editors), Bacteria in Nature, volume 2. Plenum Press, New York.

    Google Scholar 

  • White, D.C., Bobbie, R.J., Herron, J.S., King, J.D., and Morrison, S.J. 1979. Biochemical measurements of microbial mass and activity from environmental samples, pp. 69–81, in Costerton, J.W. and Colwell, R.R. (editors), Native Aquatic Bacteria. American Society for Testing and Materials Special Technical Publication no. 695, Philadelphia.

    Google Scholar 

  • Williams, P.J. LeB. 1981. Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kieler Meeresforschungen 5: 1–28.

    Google Scholar 

  • Winogradsky, S. 1949. Méthode dans la Microbiologic du Sol. Masson et Cie., Paris.

    Google Scholar 

  • Woese, C. 1987. Bacterial evolution. Microbiological Reviews 51: 221–271.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ulrich Sommer

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

About this chapter

Cite this chapter

Pedrós-Alió, C. (1989). Toward an Autecology of Bacterioplankton. In: Sommer, U. (eds) Plankton Ecology. Brock/Springer Series in Contemporary Bioscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74890-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74890-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74892-9

  • Online ISBN: 978-3-642-74890-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics