The Role of Competition in Zooplankton Succession

  • William R. DeMott
Part of the Brock/Springer Series in Contemporary Bioscience book series (BROCK/SPRINGER)

Abstract

Debates over the role of competition in natural communities often consider two broad alternatives. The first view, based on the Lotka Volterra model, is that populations are consistently food-limited, and species that coexist in nature do so by virtue of niche partitioning (Schoener, 1982). In this and related equilibrium models, temporal changes in environmental conditions and poulation sizes are assumed to be unimportant. In contrast, nonequilibrium models emphasize the role of changing conditions in stabilizing species’ coexistence (for reviews of nonequilibrium concepts see Chesson and Case, 1986; DeAngelis and Waterhouse, 1987). Most commonly, environmental fluctuations or predation are considered to keep populations at low densities, where exploitative competition is unimportant (Wiens, 1977; Strong, 1986). As pointed out by Hutchinson (1961) in his discussion of the “paradox of the plankton,” however, changing environmental conditions could cause shifts in competitive ability, thus promoting species’ persistence despite continuous resource limitation and consistently strong competition.

Keywords

Biomass Toxicity Respiration Sewage Turbidity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, J.D. 1973. Competition and the relative abundance of two cladocerans. Ecology 54: 484–498.CrossRefGoogle Scholar
  2. Allan, J.D. 1976. Life history patterns in zooplankton. American Naturalist 110: 165–180.CrossRefGoogle Scholar
  3. Allan, J.D. 1977. An analysis of seasonal dynamics of a mixed population of Daphnia and the associated cladoceran community. Freshwater Biology 7: 505–512.CrossRefGoogle Scholar
  4. Allan, J.D. and Goulden, C.E. 1980. Some aspects of reproductive variation among freshwater zooplankton, pp. 388–410, in Kerfoot, W.C. (editor), Ecology and Evolution of Zooplankton Communities. New England University Press, Hanover, N.H.Google Scholar
  5. Arnold, D.E. 1971. Ingestion, assimilation, survival, and reproduction by Daphnia pulex fed seven species of blue-green algae. Limnology and Oceanography 16: 906–920.CrossRefGoogle Scholar
  6. Arruda, J.A., Marzolf, G.R., and Faulk, R.T. 1983. The role of suspended sediments in the nutrition of zooplankton in turbid reservoirs. Ecology 64: 1225–1235.CrossRefGoogle Scholar
  7. Bengtsson, J. 1986. Life histories and interspecific competition between three Daphnia species in rockpools. Journal of Animal Ecology 55: 641–655.CrossRefGoogle Scholar
  8. Bengtsson, J. 1987. Competitive dominance among Cladocera: Are single-factor explanations enough? Hydrobiologia 145: 19–28.CrossRefGoogle Scholar
  9. Benndorf, J. and Horn, W. 1985. Theoretical considerations on the relative importance of food limitation and predation in structuring zooplankton communities. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 21: 383–396.Google Scholar
  10. Bleiwas, A.H. and Stokes, P.M. 1985. Collection of large and small particles by Bosmina. Limnology and Oceanography 30: 1090–1092.CrossRefGoogle Scholar
  11. Bogdan, K.G. and Gilbert, J.J. 1984. Body size and food size in freshwater zooplankton. Proceedings of the National Academy of Sciences USA 81: 6427–6431.CrossRefGoogle Scholar
  12. Bogdan, K.G. and Gilbert, J.J. 1987. Quantitative comparison of food niches in some freshwater zooplankton. A multi-tracer-cell approach. Oecologia 72: 331–340.CrossRefGoogle Scholar
  13. Brendelberger, H. 1985. Filter mesh-size and retention efficiency for small particles: comparative studies with Cladocera. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 21: 135–146.Google Scholar
  14. Brooks, J.L. and Dodson, S.I. 1965. Predation, body size and composition of plankton. Science 150: 28–35.PubMedCrossRefGoogle Scholar
  15. Burns, C.W. 1968. The relationship between body size of filter-feeding Cladocera and the maximum size of particle ingested. Limnology and Oceanography 13: 675–678.CrossRefGoogle Scholar
  16. Burns, C.W. 1969. Relation between filtering rate, temperature, and body size in four species of Daphnia. Limnology and Oceanography 14: 693–700.CrossRefGoogle Scholar
  17. Burns, C.W. 1985. The effects of starvation on naupliar development and survivorship of three species of Boeckella (Copepoda: Calanoida). Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 21: 297–309.Google Scholar
  18. Byron, E.R., Folt, C.L., and Goldman, C.R. 1984. Copepod and cladoceran success in an oligotrophic lake. Journal of Plankton Research 6: 45–65.CrossRefGoogle Scholar
  19. Carvalhro, G.R. 1987. The clonal ecology of Daphnia magna. II. Thermal differentiation among seasonal clones. Journal of Animal Ecology 56: 469–478.CrossRefGoogle Scholar
  20. Carvalhro, G.R. and Crisp, D.J. 1987. The clonal ecology of Daphnia magna Crustacea: Cladocera. I. Temporal changes in the clonal structure of a natural population. Journal of Animal Ecology 56: 453–468.CrossRefGoogle Scholar
  21. Chesson, P.L. and Case, T.J. 1986. Overview: Nonequilibrium community theories: Chance, variability, history, and coexistence, pp. 229–239, in Diamond, J. and Case, T.J. (editors), Community Ecology. Harper and Row, New York.Google Scholar
  22. Chow-Fraser, P. and Maly, E.J. 1988. Aspects of mating, reproduction, and co-occurrence in three freshwater calanoid copepods. Freshwater Biology 19: 95–108.CrossRefGoogle Scholar
  23. Cole, G.A. 1961. Some calanoid copepods from Arizona with notes on congeneric occurrences of Diaptomus species. Limnology and Oceanography 6: 432–442.CrossRefGoogle Scholar
  24. Confer, J.L. and Cooley, J.N. 1977. Copepod instar survival and predation by zooplankton. Journal of the Fisheries Research Board of Canada 34: 703–706.CrossRefGoogle Scholar
  25. Connell, J.H. 1980. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35: 131–138.CrossRefGoogle Scholar
  26. Cooper, S.D. and Smith, D.W. 1982. Competition, predation, and the relative abundance of two species of Daphnia. Journal of Plankton Research 4: 859–879.CrossRefGoogle Scholar
  27. Crosetti, D. and Margaritora, F.G. 1987. Distribution and life cycles of cladocerans in temporary pools from Central Italy. Freshwater Biology 18: 165–176.CrossRefGoogle Scholar
  28. Daborn, G. and Hayward, J.A. 1978. Studies on Daphnia pulex in sewage oxidation ponds. Canadian Journal of Zoology 56: 1392–1401.CrossRefGoogle Scholar
  29. Dagg, M. 1977. Some effects of patchy food environments on copepods. Limnology and Oceanography 22: 99–107.CrossRefGoogle Scholar
  30. Davis, C.C. 1961. Breeding of calanoid copepods in Lake Erie. Internationale Vereinigung für Theoretische und Angewandte Limnologie: Verhandlungen 14: 933–942.Google Scholar
  31. Dawidowicz, P., Gliwicz, Z.M., and Gulati, R.D. In press. Can Daphnia prevent a blue-green algal bloom in hypereutrophic lakes? Limnologica.Google Scholar
  32. DeAngelis, D.L. and Waterhouse, J.C. 1987. Equilibrium and nonequilibrium concepts in ecology. Ecological Monographs 57: 1–21.CrossRefGoogle Scholar
  33. de Bernardi, R. 1979. An experimental approach to the interspecific competition between two species of Daphnia: D. hyalina and D. pulicaria (Crustacea). Vestnik Ceskoslovenske Spolecnosti Zoologicke 43: 81–93.Google Scholar
  34. DeFrenza, J., Kirner, R.J., Maly, E.J., and Van Leeuwen, H.C. 1986. The relationship of sex size ratio and season to mating intensity in some calanoid copepods. Limnology and Oceanography 31: 491–496.CrossRefGoogle Scholar
  35. DeMott, W.R. 1982. Feeding selectivities and relative ingestion rates of Daphnia and Bosmina. Limnology and Oceanography 27: 518–527.CrossRefGoogle Scholar
  36. DeMott, W.R. 1983. Seasonal succession in a natural Daphnia assemblage. Ecological Monographs 53: 321–340.CrossRefGoogle Scholar
  37. DeMott, W.R. 1985. Relations between filter mesh—size, feeding mode, and capture efficiency for cladocerans feeding on ultrafine particles. Archiv für Hydrobiologie Beihefte Ergenbnisse der Limnologie 21: 125–134.Google Scholar
  38. DeMott, W.R. 1986. The role of taste in food selection by freshwater zooplankton. Oecologia 69: 334–340.CrossRefGoogle Scholar
  39. DeMott, W.R. 1988a. Discrimination between algae and artificial particles by freshwater and marine copepods. Limnology and Oceanography 33: 397–408.CrossRefGoogle Scholar
  40. DeMott, W.R. 1988b. Discrimination between algae and detritus by freshwater and marine zooplankton. Bulletin of Marine Science 43: 486–499.Google Scholar
  41. DeMott, W.R. 1989. Optimal foraging theory as a predictor of chemically mediated selection by suspension-feeding copepods. Limnology and Oceanography 1989 34: 140–154.CrossRefGoogle Scholar
  42. DeMott, W.R. and Kerfoot, W.C. 1982. Competition among cladocerans: nature of the interaction between Bosmina and Daphnia. Ecology 63: 1949–1966.CrossRefGoogle Scholar
  43. Dodson, S.I. 1972. Mortality in a population of Daphnia rosea. Ecology 53: 1011–1023.CrossRefGoogle Scholar
  44. Dodson, S.I. 1974. Zooplankton competition and predation: an experimental test of the size-efficiency hypothesis. Ecology 55: 605–613.CrossRefGoogle Scholar
  45. Duncan, A. 1985. Body carbon in daphnids as an indicator of the food concentration available in the field. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 21: 81–90.Google Scholar
  46. Edmondson, W.T. 1985. Reciprocal changes in abundance of Diaptomus and Daphnia in Lake Washington. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 21: 475–481.Google Scholar
  47. Elmore, J.L. 1983. Factors influencing Diaptomus distributions: An experimental study in subtropical Florida. Limnology and Oceanography 28: 522–532.CrossRefGoogle Scholar
  48. Ferguson, A.J.D., Thompson, J.M., and Reynolds, C.S. 1982. Structure and dynamics of zooplankton communities maintained in closed systems, with special reference to the algal food supply. Journal of Plankton Research 4: 523–543.CrossRefGoogle Scholar
  49. Foran, J.A. 1986. The relationship between temperature, competition and the potential for colonization of a subtropical pond by Daphnia magna. Hydrobiologia 134: 103–112.CrossRefGoogle Scholar
  50. Frost, B.W. 1980. The inadequacy of body size as an indicator of niches in the zooplankton, pp. 742 - 753, in Kerfoot, W.C. (editor), Ecology and Evolution of Zooplankton Communities. University Press of New England, Hanover, N.H.Google Scholar
  51. Frost, B.W. 1985. Food limitation of the planktonic marine copepods Calanus pacificus and Pseudocalanus sp. in a temperate fjord. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 21: 1–13.Google Scholar
  52. Fryer, G. 1987. Morphology and the classification of the so-called Cladocera. Hydrobiologia 145: 19–28.CrossRefGoogle Scholar
  53. Fulton, R.S. III. 1989. Grazing on filamentous algae by herbivorous zooplankton. Freshwater Biology 20: 263–272.CrossRefGoogle Scholar
  54. Fulton, R.S. Ill and Paerl, H.W. 1987a. Effects of colonial morphology on zooplankton utilization of algal resources during blue-green algal (Microcystis aeruginosa) blooms. Limnology and Oceanography 32: 634–644.CrossRefGoogle Scholar
  55. Fulton, R.S. Ill and Paerl, H.W. 1987b. Toxic and inhibitory effects of the blue-green alga Microcystis aeruginosa on herbivorous zooplankton. Journal of Plankton Research 9: 837–855.CrossRefGoogle Scholar
  56. Geller, W. 1986. Diurnal vertical migration of zooplankton in a temperate great lake (L. Constance): A starvation avoidance mechanism? Archiv für Hydrobiologie/Supplement 74: 1–60.Google Scholar
  57. Geller, W. and Müller, H. 1981. The filtration apparatus of Cladocera: filter mesh—sizes and their implications on food selectivity. Oecologia 49: 316–321.CrossRefGoogle Scholar
  58. Geller, W. and Miiller, H. 1985. Seasonal variability in the relationship between body length and individual dry weight as related to food abundance and clutch size in two coexisting Daphnia species. Journal of Plankton Research 7: 1–18.CrossRefGoogle Scholar
  59. Ghilarov, A.M. 1984. The paradox of the plankton reconsidered; or, why do species coexist. Oikos 43: 46–52.CrossRefGoogle Scholar
  60. Gilarov, A.M. 1985. Dynamics and structure of cladoceran populations under conditions of food limitation. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 21: 323–332.Google Scholar
  61. Gilbert, J.J. 1985. Competition between rotifers and Daphnia. Ecology 66: 1943–1950.CrossRefGoogle Scholar
  62. Gilbert, J.J. and Bodgan, K.G. 1984. Rotifer grazing: in situ studies on selectivity and rates, pp. 97–133, in Meyers, D.G. and Strickler, J.R. (editors), Trophic Interactions Within Aquatic Ecosystems, AAAS Symposium Series no. 85. Westview, Boulder, Colorado.Google Scholar
  63. Gilbert, J.J. and Stemberger, R.S. 1985. Control of Keratella populations by interference competition from Daphnia. Limnology and Oceanography 30: 180–188.CrossRefGoogle Scholar
  64. Gliwicz, Z.M. 1977. Food size selection and seasonal succession of filter feeding zooplankton in a eutrophic lake. Ekologia Polska A 25: 179–225.Google Scholar
  65. Gliwicz, Z.M. 1980. Filtering rates, food size-selection, and feeding rates in cladocerans—Another aspect of interspecific competition in filter-feeding zooplankton, pp. 282–291, in Kerfoot, W.C. (editor), Ecology and Evolution of Zooplankton Communities. University of New England Press, Hanover, N.H.Google Scholar
  66. Gliwicz, Z.M., Ghilarov, A., and Pijanowska, J. 1981. Food and predation as major factors limiting two natural populations of Daphnia cucullata. Hydrobiologia 80: 205–218.CrossRefGoogle Scholar
  67. Gliwicz, Z.M. and Lampert, W. In prep. Competitive superiority in three Daphnia species and its reversal in the presence of blue-green filaments.Google Scholar
  68. Gliwicz, Z.M. and Siedlar, E. 1980. Food size limitation and algae interfering with food collection in Daphnia. Archiv für Hydrobiologie 88: 155–177.Google Scholar
  69. Gophen, M. and Geller, W. 1984. Filter mesh size and food particle uptake by Daphnia. Oecologia 64: 408–412.CrossRefGoogle Scholar
  70. Goulden, C.E., Henry, L., and Berrigan, D. 1987. Egg size, postembryonic yolk and survival ability. Oecologia 72: 28–31.CrossRefGoogle Scholar
  71. Goulden, C.E. and Henry, L.L. 1984. Lipid energy reserves and their role in Cladocera, pp. 167–185, in Meyers, D.G. and Strickler, J.R. (editors), Trophic Interactions Within Aquatic Ecosystems, AAAS Selection Symposium 85. Westview Press, Boulder, Colorado.Google Scholar
  72. Goulden, C.E., Henry, L.L., and Tessier, A.J. 1982. Body size, energy reserves and compoetitive ability in three species of Cladocera. Ecology 63: 1780–1789.CrossRefGoogle Scholar
  73. Goulden, C.E. and Hornig, L.L. 1980. Body size, energy reserves in plankton Cladocera and their consequences to competition. Proceedings of the National Academy of Sciences USA 77: 1716–1720.CrossRefGoogle Scholar
  74. Goulden, C.E., Hornig, L.L., and Wilson, C. 1978. Why do large zooplankton species dominate? Internationale Vereinigung für Theoretische und Angewandte Limnologie: Verhandlungen 20: 2457–2460.Google Scholar
  75. Grant, J.W.G. and Bayly, I.A.E. 1981. Predator induction of crests in morphs of the Daphnia carinata King complex. Limnology and Oceanography 26: 201–218.CrossRefGoogle Scholar
  76. Grubb, P.J. 1986. Problems posed by sparse and patchily distributed species in speciesrich plant communities, pp. 207–225, in Diamond, J. and Case, T.J. (editors), Community Ecology. Harper and Row, New York.Google Scholar
  77. G.-Toth, L., Zankai, N.P., and Messner, O.M. 1987. Alga consumption of four dominant planktonic crustaceans in Lake Balaton (Hungary). Hydrobiologia 145: 323–332.CrossRefGoogle Scholar
  78. Hairston, N.G. Jr. and Twombly, S. 1985. Obtaining life table data from cohort analysis: a critique of current methods. Limnology and Oceanography 30: 886–892.CrossRefGoogle Scholar
  79. Hall, D.J., Threlkeld, S.T., Burns, C.W., and Crowley, P.H. 1976. The size-efficiency hypothesis and the size structure of zooplankton communities. Annual Review of Ecology and Systematics 7: 177–208.CrossRefGoogle Scholar
  80. Hammer, U.T. and Sawchyn, W.W. 1968. Seasonal succession and congeneric associations of Diaptomus spp. (Copepoda) in some Saskatchewan Ponds. Limnology and Oceanography 13: 476–484.CrossRefGoogle Scholar
  81. Hanazato, T. and Yasuno, M. 1985. Effect of temperature in the laboratory studies on growth, egg development and first parturition of five species of Cladocera. Japanese Journal of Limnology 46: 185–191.CrossRefGoogle Scholar
  82. Hanazato, T. and Yasuno, M. 1987a. Evaluation of Microcystis as a food for zooplankton in a eutrophic lake. Hydrobiologia 144: 251–259.CrossRefGoogle Scholar
  83. Hanazato, T. and Yasuno, M. 1987b. Experimental studies on competition between Bosmina longirostris and Bosmina fatalis. Hydrobiologia 154: 189–199.CrossRefGoogle Scholar
  84. Hanazato, T., Yasuno, M., Iwakuma, T., and Takamura, N. 1984. Seasonal changes in the occurrence of Bosmina longirostris and Bosmina fatalis in relation to Microcystis bloom in Lake Kasumigaura. Japanese Journal of Limnology 45: 153–157.CrossRefGoogle Scholar
  85. Harris, R.P. 1982. Comparison of the feeding behaviour of Calanus and Pseudocalanus in two experimentally manipulated enclosed ecosystems. Journal of the Marine Biological Association of the United Kingdom 62: 71–91.CrossRefGoogle Scholar
  86. Harris, R.P., and Paffenhöfer, G.-A. 1976. The effect of food concentration on cumulative ingestion and growth efficiency of two small marine planktonic copepods. Journal of the Marine Biological Association of the United Kingdom 56: 875–888.CrossRefGoogle Scholar
  87. Hart, R.D. 1986. Zooplankton abundance, community structure and dynamics in relation to inorganic turbidity, and their implications for a potential fishery in subtropical Lake le Roux, South Africa. Freshwater Biology 16: 351–371.CrossRefGoogle Scholar
  88. Havel, J.E. and Dodson, S.I. 1984. Chaoborus predation on typical and spined morphs on Daphnia pulex: Behavioral observations. Limnology and Oceanography 29: 487–494.Google Scholar
  89. Hayward, T.L. and McGowan, J.A. 1979. Patterns and structure in an oceanic zooplankton community. American Zoologist 19: 1045–1055.Google Scholar
  90. Hebert, P.D.N. 1977. Niche overlap among species in the Daphnia carinata complex. Journal of Animal Ecology 46: 399–409.CrossRefGoogle Scholar
  91. Hebert, P.D.N. 1978. The population biology of Daphnia. Biological Reviews 53: 387–426.CrossRefGoogle Scholar
  92. Hebert, P.D.N. 1982. Competition in zooplankton communities. Annales Zoologici Fennici 19: 349–356.Google Scholar
  93. Hebert, P.D.N, and Crease, T.J. 1980. Clonal coexistence in Daphnia pulex (Leydig): Another planktonic paradox. Science 207: 1363–1365.Google Scholar
  94. Heisey, D. and Porter, K.G. 1977. The effect of ambient oxygen concentration on filtering and respiration rates of Daphnia galeata mendotae and Daphnia magna. Limnology and Oceanography 22: 839–845.CrossRefGoogle Scholar
  95. Herzig, A. 1984. Temperature and life cycle strategies of Diaphanosoma brachyurum: an experimental study on development, growth, and survival. Archiv für Hydrobiologie 101: 143–178.Google Scholar
  96. Hessen, D.O. 1985. Filtering structures and particle size selection in coexisting Cladocera. Oecologia 66: 368–372.CrossRefGoogle Scholar
  97. Hoenicke, R. and Goldman, C.R. 1987. Resource dynamics and seasonal changes in competitive interactions among three cladoceran species. Journal of Plankton Research 9: 397–417.CrossRefGoogle Scholar
  98. Hofmann, W. 1979. Characteristics of syntopic populations of Eudiaptomus gracilis (Sars) and E. graciloides (Lilljeborg) in three lakes with different trophic levels. Archiv für Hydrobiologie 86: 1–12.Google Scholar
  99. Holm, N.P., Ganf, G.G., and Shapiro, J. 1983. Feeding and assimilation rates of Daphnia pulex fed Aphanizomenon flos-aquae. Limnology and Oceanography 28: 677–687.CrossRefGoogle Scholar
  100. Hrbáček, J. 1977. Competition and predation in relation to species composition of freshwater zooplankton, mainly Cladocera, pp. 305–353, in Cairns, J. (editor), Aquatic Microbial Communities. Garland, New York.Google Scholar
  101. Hrbáčková, M. and Hrbáček, J. 1978. The growth rate of Daphnia pulex and Daphnia pulicaria (Crustacea: Cladocera) at different food levels. Vestnik Ceskoslovenske Spolecnosti Zoologicke 42: 115–127.Google Scholar
  102. Hrbáčková, M. and Hrbáček, J. 1979. Rate of the postembryonic development in several populations of the group of species Daphnia hyalina at various concentrations of food. Vestnik Ceskoslovenske Spolecnosti Zoologicke 43: 253–259.Google Scholar
  103. Hrbáčková-Esslova, M. 1963. The development of three species of Daphnia in the surface water of the Slapy Reservoir. Internationale Revue dergesamten Hydrobiologie 48: 325–333.CrossRefGoogle Scholar
  104. Huston, M. 1979. A general hypothesis of species diversity. American Naturalist 113: 81–101.CrossRefGoogle Scholar
  105. Hutchinson, G.E. 1951. Copepodology for the ornithologist. Ecology 32: 571–577.CrossRefGoogle Scholar
  106. Hutchinson, G.E. 1959. Homage to Santa Rosalia, or why are there so many kinds of animals? American Naturalist 93: 145–159.CrossRefGoogle Scholar
  107. Hutchinson, G.E. 1961. The paradox of the plankton. American Naturalist 95: 137–146.CrossRefGoogle Scholar
  108. Hutchinson, G.E. 1967. A Treatise of Limnology. Volume II. Introduction to Lake Biology and the Limnoplankton. John Wiley and Sons, New York.Google Scholar
  109. Infante, A. 1973. Untersucheungen uber die Ausutzbarkeit verscheidener Algen durch das Zooplankton. Archiv für Hydrobiologie Supplement 42: 340–405.Google Scholar
  110. Infante, A. and Abdella, S.E.B. 1985. Inhibition of Daphnia by Oscillatoria in Lake Washington. Limnology and Oceanography 30: 1046–1052.CrossRefGoogle Scholar
  111. Infante, A. and Litt, A.H. 1985. Differences between two species of Daphnia in the use of 10 species of algae in Lake Washington. Limnology and Oceanography 30: 1053–1059.CrossRefGoogle Scholar
  112. Infante, A. and Riehl, W. 1984. The effect of Cyanophyta upon zooplankton in a eutrophic tropical lake (Lake Valencia, Venezuela). Hydrobiologia 113: 293–298.CrossRefGoogle Scholar
  113. Jacobs, J. 1977a. Coexistence of similar zooplankton species by differential adaptation to reproduction and escape in an environment with fluctuating food and enemy densities. I. A model. Oecologia 29: 233–247.CrossRefGoogle Scholar
  114. Jacobs, J. 1977b. Coexistence of similar zooplankton species by differential adaptation to reproduction and escape in an environment with fluctuating food and enemy densities. II. Field analysis of Daphnia. Oecologia 30: 313–329.CrossRefGoogle Scholar
  115. Jamieson, C.D. and Burns, C.W. 1985. Copepod distribution patterns: Life history adaptations to food and temperature. Internationale Vereinigung für Theoretische und Angewandte Limnologie: Verhandlungen 22: 3169.Google Scholar
  116. Jarvis, A.C. 1986. Zooplankton community grazing in a hypertrophic lake (Hartbeespoort Dam, South Africa). Journal of Plankton Research 8: 1065–1078.CrossRefGoogle Scholar
  117. Katona, S.K. 1973. Evidence for sex pheromones in planktonic copepods. Limnology and Oceanography 18: 574–583.CrossRefGoogle Scholar
  118. Kerfoot, W.C. 1977. Competition in cladoceran communities: The cost of evolving defenses against copepod predation. Ecology 58: 303–313.CrossRefGoogle Scholar
  119. Kerfoot, W.C. 1981. Long-term replacement cycles in cladoceran communities. A history of predation. Ecology 62: 216–233.CrossRefGoogle Scholar
  120. Kerfoot, W.C. and DeMott, W.R. 1988. Foundations for evaluating community inter-actions: the use of enclosures to investigate the coexistence of Daphnia and Bosmina, pp. 725–741, in Kerfoot, W.C. (editor), Ecology and Evolution of Zooplankton Communities. University Press of New England, Hanover, N.H.Google Scholar
  121. Kerfoot, W.C., DeMott, W.R., and DeAngelis, D.L. 1985a. Interactions among cladocerans: Food limitation and exploitative competition. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 21: 431–452.Google Scholar
  122. Kerfoot, W.C., DeMott, W.R., and Levitan, C. 1985b. Nonlinearities in competitive interactions: Component variable or system response? Ecology 66: 959–965.CrossRefGoogle Scholar
  123. Kerfoot, W.C., Levitan, C., and DeMott, W.R. 1988. Daphnia-phytoplankton interactions: density dependent shifts in resource quality. Ecology 69: 1806–1825.Google Scholar
  124. Kersting, K. 1983. Direct determination of the “threshold food concentration” for Daphnia magna. Archiv für Hydrobiologie 96: 510–514.Google Scholar
  125. Koch, A.L. 1974. Coexistence resulting from an alteration of density dependent and density independent growth. Journal of Theoretical Biology 44: 373–386.PubMedCrossRefGoogle Scholar
  126. Koehl, M.A.R. 1984. Mechanisms of particle capture by copepods at low Reynolds numbers: Possible modes of selective feeding, pp. 135–166, in Meyers, D.G. and Strickler, J.R. (editors), Trophic Interactions Within Aquatic Ecosystems, AAAS Selected Symposium 85. Westview Press, Boulder, Colorado.Google Scholar
  127. Kratz, T.K., Frost, T.M., and Magnuson, J.J. 1987. Inferences from spatial and temporal variability in ecosystems: long-term zooplankton data from lakes. American Naturalist 129: 830–846.CrossRefGoogle Scholar
  128. Kring, R.L. and O’Brien, W.J. 1976. Accommodation of Daphnia pulex to altered pH conditions as measured by feeding rate. Limnology and Oceanography 21: 313–315.CrossRefGoogle Scholar
  129. Lampert, W. 1976. A directly coupled, artificial two-step food chain for long-term experiments with filter-feeders at constant food concentrations. Marine Biology 37: 349–355.CrossRefGoogle Scholar
  130. Lampert, W. 1977a. Studies on the carbon balance of Daphnia pulex De Geer as related to environmental conditions. I. Methodological problems of the use of 14C for the measurement of carbon assimilation. Archiv für Hydrobiologie, Supplement 48: 287–309.Google Scholar
  131. Lampert, W. 1977b. Studies on the carbon balance of Daphnia pulex De Geer as related to environmental conditions. II. The dependence of carbon assimilation on animal size, temperature, food concentration, and diet species. Archiv für Hydrobiologie, Supplement 48: 310–335.Google Scholar
  132. Lampert, W. 1977c. Studies on the carbon balance of Daphnia pulex De Geer as related to environmental conditions. IV. Determination of the “threshold” concentration as a factor controlling the abundance of zooplankton species. Archiv für Hydrobiologie, Supplement 48: 361–368.Google Scholar
  133. Lampert, W. 1978. A field study on the dependence of the fecundity of Daphnia on food concentration. Oecologia 36: 363–369.CrossRefGoogle Scholar
  134. Lampert, W. 1981. Inhibitory and toxic effects of blue-green algae on Daphnia. Internationale Revue der gesamten Hydrobiologie 66: 285–298.CrossRefGoogle Scholar
  135. Lampert, W., Fleckner, W., Rai, H., and Taylor, B.E. 1986. Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase. Limnology and Oceanography 31: 478–490.CrossRefGoogle Scholar
  136. Lampert, W. and Muck, P. 1985. Multiple aspects of food limitation in zooplankton communities: The Daphnia-Eudiaptomus example. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 21: 311–322.Google Scholar
  137. Lampert, W. and Schober, U. 1980. The importance of “threshold” food concentrations, pp. 264–267, in Kerfoot, W.C. (editor), Ecology and Evolution of Zooplankton Communities. Press of New England, Hanover, N.H.Google Scholar
  138. Lane, P. A. 1975. The dynamics of aquatic systems: A comparative study of the structure of four zooplankton communities. Ecological Monographs 45: 307–336.CrossRefGoogle Scholar
  139. Lane, P.A., Makarewicz, J.C., and Likens, G.E. 1978. Zooplankton niches and the community structure controversy. Science 200: 458–463.PubMedCrossRefGoogle Scholar
  140. Lehman, J.T. 1976. The filter feeder as an optimal forager, and the predicted shape of feeding curves. Limnology and Oceanography 21: 501–516.CrossRefGoogle Scholar
  141. Lei, C.H. and Armitage, K.B. 1980. Population dynamics and production of Daphnia ambigua in a fish pond, Kansas. University of Kansas Science Bulletin 25: 687–715.Google Scholar
  142. Levins, R. 1979. Coexistence in a variable environment. American Naturalist 113: 765–783.Google Scholar
  143. Levitan, C. 1987. Formal stability analysis of a planktonic freshwater community, pp. 71–100, in Kerfoot, W.C. and Sih, A. (editors), Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover.Google Scholar
  144. Loaring, J.M. and Hebert, P.D.N. 1981. Ecological differences among clones of Daphnia pulex. Oecologia 51: 162–168.CrossRefGoogle Scholar
  145. Lynch, M. 1977. Fitness and optimal size in zooplankton populations. Ecology 58: 763–774.CrossRefGoogle Scholar
  146. Lynch, M. 1978. Complex interactions between natural coexploiters Daphnia and Ceriodaphnia. Ecology 59: 552–564.CrossRefGoogle Scholar
  147. Lynch, M. 1979. Predation, competition, and zooplankton community structure: An experimental study. Limnology and Oceanography 24253–272.CrossRefGoogle Scholar
  148. Lynch, M. 1980a. Predation, enrichment, and the evolution of cladoceran life histories: a theoretical approach, pp. 367–376, in Kerfoot, W.C. (editor), Ecology and Evolution of Zooplankton Communities. University Press of New England, Hanover, N.H.Google Scholar
  149. Lynch, M. 1980b. The evolution of cladoceran life histories. Quarterly Review of Biology 55: 23–42.CrossRefGoogle Scholar
  150. Lynch, M. and Shapiro, J. 1981. Predation, enrichment, and phytoplankton community structure. Limnology and Oceanography 26: 86–102.CrossRefGoogle Scholar
  151. MacArthur, R.H. and Wilson, E.O. 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, N.J.Google Scholar
  152. Makarewicz, J.C. and Likens, G.E. 1975. Niche analysis of a zooplankton community. Science 190: 100–103.Google Scholar
  153. Maly, E.J. 1973. Density, size and clutch of two high altitude diaptomid copepods. Limnology and Oceanography 18: 840–848.CrossRefGoogle Scholar
  154. Maly, E.J. 1976. Resource overlap between co-occurring copepods: effects of predation and environmental fluctuation. Canadian Journal of Zoology 54: 933–940.CrossRefGoogle Scholar
  155. Maly, E.J. and Maly, M.P. 1974. Dietary differences between two co-occurring calanoid copepod species. Oecologia 17: 325–333.CrossRefGoogle Scholar
  156. Matveev, V.M. 1983. Estimating competition in cladocerans using data on dynamics of clutch size and population density. Internationale Revue der gesamten Hydrobiologie 68: 785–798.CrossRefGoogle Scholar
  157. Matveev, V.M. 1985a. Delayed density dependence and competitive ability in two cladocerans. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 21: 453–459.Google Scholar
  158. Matveev, V.M. 1985b. Competition and population time lags in Bosmina (Cladocera, Crustacea). Internationale Revue der gesamten Hydrobiologie 70: 491–508.CrossRefGoogle Scholar
  159. Matveev, V.F. 1986a. Long-term changes in the community of planktonic crustaceans in Lake Glubokoe in relation to predation and competition. Hydrobiologia 141: 33–43.CrossRefGoogle Scholar
  160. Matveev, V.F. 1986b. History of the community of planktonic Cladocera in Lake Glubokoeo (Moscow Region). Hydrobiologia 141: 145–152.CrossRefGoogle Scholar
  161. Matveev, V.F. 1987. Effect of competition on the demography of planktonic cladocerans Daphnia and Diaphanosoma. Oecologia 74: 468–477.CrossRefGoogle Scholar
  162. Mayzaud, P. and Mayzaud, O. 1985. The influence of food limitation on the nutritional adaptation of marine zooplankton. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 21: 223–233.Google Scholar
  163. Mayzaud, P. and Poulet, S.A. 1978. The importance of the time factor in the response of zooplankton to varying concentrations of naturally occurring particulate matter. Limnology and Oceanography 23: 1144–1154.CrossRefGoogle Scholar
  164. McCauley, E. and Murdoch, W.W. 1987. Cyclic and stable populations: plankton as paradigm. American Naturalist 129: 97–121.CrossRefGoogle Scholar
  165. McNaught, D.C. 1975. A hypothesis to explain the succession from calanoids to cladocerans during eutrophication. Internationale Vereinigung für Theoretische und Angewandte Limnologie: Verhandlungen 19: 724–731.Google Scholar
  166. Miller, R.S. 1967. Pattern and process in competition. Advances in Ecological Research 4: 1–74.CrossRefGoogle Scholar
  167. Modlin, R.F. 1982. Successional changes, variations in population densities, and reproductive strategies of Cladocera in two temporary ponds in North Alabama. Journal of Freshwater Ecology 1: 589–598.CrossRefGoogle Scholar
  168. Mort, M.A. and Wolf, H.G. 1985. Enzyme variability in large-lake Daphnia. Heredity 55: 27–37.CrossRefGoogle Scholar
  169. Muck, P. and Lampert, W. 1984. An experimental study on the importance of food conditions for the relative abundance of calanoid copepods and cladocerans. I. Comparative feeding studies with Eudiaptomus gracilis and Daphnia longispina. Archiv für Hydrobiologie, Supplement 66: 157–179.Google Scholar
  170. Muller, H. 1985. The niches of Bosmina coregoni and Bosmina longirostris in the ecosystem of Lake Constance. Internationale Vereinigung für Theoretische und Angewandte Limnologie: Verhandlungen 22: 3137–3143.Google Scholar
  171. Murdoch, W.W. and McCauley, E. 1985. Three distinct types of dynamic behavior shown by a single planktonic system. Nature 316: 628–630.CrossRefGoogle Scholar
  172. Nadlin-Hurley, C.M. and Duncan, A. 1976. A comparison of Daphnia gut particles with sestonic particles present in two Thames Valley reservoirs throughout 1970 and 1971. Freshwater Biology 6: 109–123.CrossRefGoogle Scholar
  173. Neill, W.E. 1975. Experimental studies of microcrustacean composition and efficiency of resource utilization. Ecology 56: 809–826.CrossRefGoogle Scholar
  174. Neill, W.E. 1978. Experimental studies on factors limiting colonization by Daphnia pulex Leydig of coastal montane lakes in British Columbia. Canadian Journal of Zoology 56: 2498–2507.CrossRefGoogle Scholar
  175. Neill, W.E. 1981. Developmental responses of juvenile Daphnia rosea to experimental alteration of temperature and natural seston concentration. Canadian Journal of Zoology 38: 1357–1362.Google Scholar
  176. Neill, W.E. 1981b. Impact of Chaoborus predation upon the structure and dynamics of a crustacean zooplankton community. Oecologia 48: 164–177.CrossRefGoogle Scholar
  177. Neill, W.E. 1984. Regulation of rotifer densities by crustacean zooplankton in an oligotrophic montane lake in British Columbia. Oecologia 61: 175–181.CrossRefGoogle Scholar
  178. Neill, W.E. 1985. The effects of herbivore competition upon the dynamics of Chaoborus predation. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 21: 483–491.Google Scholar
  179. O’Brien, W.J., Kettle, D., and Riessen, H. 1979. Helmets and invisible armor: structures reducing predation from tactile and visual planktivores. Ecology 60: 287–294.CrossRefGoogle Scholar
  180. Orcutt, J.R. Jr. and Porter, K.G. 1984. The synergistic effects of temperature and food concentration on life history parameters of Daphnia. Oecologia 63: 300–306.CrossRefGoogle Scholar
  181. Orcutt, J.D. and Porter, K.G. 1985. Food level effects on the competitive interactions of two co-occurring cladoceran zooplankton: Diaphanosoma brachyurum and Daphnia ambigua. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 21: 465–474.Google Scholar
  182. Pace, M.L., Porter, K.G., and Feig, Y.S. 1983. Species- and age-specific differences in bacterial resource utilization by two co-occurring cladocerans. Ecology 64: 1145–1156.CrossRefGoogle Scholar
  183. Pennak, R.W. 1957. Species composition of limnetic zooplankton communities. Limnology and Oceanography 2: 222–232.Google Scholar
  184. Piyasiri, S. 1985. Methodological aspects of defining food dependence and food thresholds in freshwater calanoids. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 21: 277–284.Google Scholar
  185. Porter, K.G. 1975. Viable gut passage of gelatinous green algae ingested by Daphnia. Internationale Vereinigung für Theoretische und Angewandte Limnologie: Verhandlungen 19: 2840–2850.Google Scholar
  186. Porter, K.G. and Mcdonough, R. 1984. The energetic cost of response to blue-green algal filaments by cladocerans. Limnology and Oceanography 29: 365–369.CrossRefGoogle Scholar
  187. Porter, K.G. and Orcutt, J.D. Jr. 1980. Nutritional adequacy, manageability, and toxicity as factors that determine food quality of green and blue-green algae for zooplankton, pp. 538–554, in Kerfoot, W.C. (editor), Ecology and Evolution of Zooplankton Communities. University Press of New England, Hanover, N.H.Google Scholar
  188. Price, H.J. 1988. Feeding mechanisms in marine and freshwater zooplankton. Bulletin of Marine Science 43: 327–343.Google Scholar
  189. Price, H.J. and Paffenhofer, G.-A. 1985. Perception of food availability by calanoid copepods. Archiv für Hydrobiologie Behefte Ergebnisse der Limnologie 21: 115–124.Google Scholar
  190. Price, P.W. 1985. Alternative paradigms in community ecology, pp. 353–386, in Price, P.W., Slobodchikoff, C.N., and Gaud, W.S. (editors), A New Ecology: Novel Approaches to Interactive Systems. John Wiley and Sons, New York, N.Y.Google Scholar
  191. Richman, S., Bohon, S.A., and Robbins, S.E. 1980. Grazing interactions among freshwater calanoid copepods, pp. 219–240, in Kerfoot, W.C. (editor), Ecology and Evolution of Zooplankton Communities. University Press of New England, Hanover, N.H.Google Scholar
  192. Richman, S. and Dodson, S.I. 1983. The effect of food quality on feeding and respiration by Daphnia and Diaptomus. Limnology and Oceanography 28: 948–956.CrossRefGoogle Scholar
  193. Rigler, F.H. and Langford, R.R. 1967. Congeneric occurrences of species of Diaptomus in southern Ontario lakes. Canadian Journal of Zoology 45: 81–90.CrossRefGoogle Scholar
  194. Romanovsky, Y.E. 1984a. Individual growth rate as a measure of competitive advantages of cladoceran crustaceans. Internationale Revue der gesamten Hydrobiologie 69: 613–632.CrossRefGoogle Scholar
  195. Romanovsky, Y.E. 1984b. Prolongation of postembryonic development in experimental and natural cladoceran populations. Internationale Revue der gesamten Hydrobiologie 69: 149–157.CrossRefGoogle Scholar
  196. Romanovsky, Y.E. 1985. Food limitation and life history strategies in cladoceran crustaceans. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 21: 363–372.Google Scholar
  197. Romanovsky, Y.E. and Feniova, I.Y. 1985. Competition among Cladocera: Effects of different levels of food supply. Oikos 44: 243–252.CrossRefGoogle Scholar
  198. Rothkaupt, K.-O. 1988. Mechanistic resource competition theory applied to experiments with zooplankton. Nature 333: 660–662.CrossRefGoogle Scholar
  199. Sandercock, G.A. 1967. A study of selected mechanisms for the coexistence of Diaptomus spp. in Clarke Lake, Ontario. Limnology and Oceanography 12: 97–112.Google Scholar
  200. Sarnelle, O. 1986. Field assessment of the quality of phytoplanktonic food available to Daphnia and Bosmina. Hydrobiologia 131: 47–56.CrossRefGoogle Scholar
  201. Schoenberg, S.A. and Carlson, R.E. 1984. Direct and indirect effects of zooplankton grazing on phytoplankton in a hypereutrophic lake. Oikos 42: 291–302.CrossRefGoogle Scholar
  202. Schoenberg, S.A. and MacCubbin, A.E. 1985. Relative feeding rates on free and par-ticle-bound bacteria by freshwater macrozooplankton. Limnology and Oceanography 30: 1084–1089.CrossRefGoogle Scholar
  203. Schoener, T.W. 1982. The controversy over interspecific competition. American Scientist 70: 586–595.Google Scholar
  204. Scott, J.M. 1980. Effect of growth rate of the food alga on the growth/ingestion efficiency of a marine herbivore. Journal of the Marine Biological Association of the United Kingdom 60: 691–702.CrossRefGoogle Scholar
  205. Shapiro, J. and Wright, D.I. 1984. Lake Restoration by biomanipulation: Round Lake, Minnesota, the first two years. Freshwater Biology 14: 371–383.CrossRefGoogle Scholar
  206. Smith, D.W. and Cooper, S.D. 1982. Competition among Cladocera. Ecology 63: 1004–1015.CrossRefGoogle Scholar
  207. Smith, D.W., Cooper, S.D., and Sarnelle, O. 1988. Curvilinear density dependence and the design of field experiments on zooplankton competition. Ecology 69: 868–869.CrossRefGoogle Scholar
  208. Smith, F.E. 1954. Quantitative aspects of population growth, pp. 277–294, in Boel, E.J. (editor), Dynamics of Growth Processes, Growth Symposium II. Princeton University Press, Princeton, N.J.Google Scholar
  209. Sommer, U. 1985. Comparison between steady state and non-steady state competition: Experiments with natural phytoplankton. Limnology and Oceanography 30: 335–346.CrossRefGoogle Scholar
  210. Sommer, U., Gliwicz, Z.M., Lampert, W., and Duncan, W. 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106: 433–471.Google Scholar
  211. Soto, D. 1985. Experimental evaluation of copepod interactions. Internationale Vereinigung für Theoretische und Angewandte Limnologie: Verhandlungen 22: 3199–3204.Google Scholar
  212. Starkweather, P.L. and Kellar, P.E. 1983. Utilization of cyanobacteria by Brachionus calyciflorus: Anabaena flos-aquae (NRC-44-1) as a sole or complementary food source. Hydrobiologie 104: 373–377.CrossRefGoogle Scholar
  213. Stemberger, R.S. and Gilbert, J.J. 1985a. Assessment of threshold food levels and population growth in planktonic rotifers. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 31: 269–276.Google Scholar
  214. Stemberger, R.S. and Gilbert, J.J. 1985b. Body size, food concentration and population growth in planktonic rotifers. Ecology 66: 1151–1159.CrossRefGoogle Scholar
  215. Strong, D.R. 1986. Density vagueness: Abiding the variance in the demography of real populations, pp. 257–268, in Diamond, J. and Case, T.J. (editors), Community Ecology, Harper and Row, New York.Google Scholar
  216. Tappa, D.W. 1965. The dynamics of the association of six limnetic species of Daphnia in Aziscoos Lake, Maine. Ecological Monographs 35: 395–423.CrossRefGoogle Scholar
  217. Taub, F.B. and Dollar, A.M. 1968. The nutritional inadequacy of Chlorella and Chlamydomonas as food for Daphnia pulex. Limnology and Oceanography 13: 607–617.CrossRefGoogle Scholar
  218. Taylor, B.E. 1985. Effects of food limitation on growth and reproduction of Daphnia. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 21: 285–296.Google Scholar
  219. Tessier, A.J. 1986. Comparative population regulation of two planktonic Cladocera (Holopedium gibberum and Daphnia catawba). Ecology 67: 285–302.CrossRefGoogle Scholar
  220. Tessier, A.J. and Goulden, C.E. 1982. Estimating food limitation in cladoceran populations. Limnology and Oceanography 27: 707–717.CrossRefGoogle Scholar
  221. Tessier, A.J. and Goulden, C.E. 1987. Cladoceran juvenile growth. Limnology and Oceanography 32: 680–686.CrossRefGoogle Scholar
  222. Tessier, A.J., Henry, L.L., Goulden, C.E., and Durand, M.W. 1983. Starvation in Daphnia: energy reserves and reproductive allocation. Limnology and Oceanography 28: 667–676.CrossRefGoogle Scholar
  223. Threlkeld, S.T. 1976. Starvation and the size structure of zooplankton communities. Freshwater Biology 6: 489–496.CrossRefGoogle Scholar
  224. Threlkeld, S.T. 1979. Estimating cladoceran birth rates: The importance of egg mortality and the egg age distribution. Limnology and Oceanography 24: 601–612.CrossRefGoogle Scholar
  225. Threlkeld, S.T. 1980. Habitat selection and population growth of two cladocerans in seasonal environments, pp. 346 - 357, in Kerfoot, W.C. (editor), Ecology and Evolution of Zooplankton Communities. University Press of New England, Hanover, N.H.Google Scholar
  226. Threlkeld, S.T. 1985. Resource variation and the initiation of midsummer declines of cladoceran populations. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 32: 333–340.Google Scholar
  227. Threlkeld, S.T. 1986. Resource-mediated demographic variation during the midsummer succession of a cladoceran community. Freshwater Biology 16: 673–684.CrossRefGoogle Scholar
  228. Tillmann, U. and Lampert, W. 1984. Competitive ability of differently sized Daphnia species: an experimental test. Journal of Freshwater Ecology 2: 311–323.CrossRefGoogle Scholar
  229. Tilman, D. 1982. Resource Competition and Community Structure. Princeton University Press, Princeton, New Jersey.Google Scholar
  230. Tilman, D., Mattson, M., and Langer, S. 1981. Competition and nutrient kinetics along a temperature gradient: An experimental test of a mechanistic approach to niche theory. Limnology and Oceanography 26: 1020–1033.CrossRefGoogle Scholar
  231. Vanderploeg, H.A., Paffenhofer, G.-A., and Liebig, J.R. 1988. Diaptomus vs. net phytoplankton: Roles of algal size and morphology in grazing avoidance. Bulletin of Marine Science 43: 377–394.Google Scholar
  232. Vanni, M.J. 1986. Competition in zooplankton communities: Suppression of small species by Daphnia pulex. Limnology and Oceanography 31: 1039–1056.CrossRefGoogle Scholar
  233. Vanni, M.J. 1987. Food availability, fish predation, and the dynamics of a zooplankton community coexisting with planktivorous fish. Ecological Monographs 57: 61–88.CrossRefGoogle Scholar
  234. Vidal, J. 1980. Physioecology of zooplankton. I. Effects of phytoplankton concentration, temperature, and body size on the growth rate of Calanus pacificus and Pseudocalanus sp. Marine Biology 56: 111–134.CrossRefGoogle Scholar
  235. Von Ende, C.N. and Dempsey, D.O. 1981. Apparent exclusion of the cladoceran Bosmina longirostris by the invertebrate predator Chaoborus americanus. American Midland Naturalist 105: 240–248.CrossRefGoogle Scholar
  236. Walters, C.J., Krause, E., Neill, W.E., and Northcote, T.G. 1987. Equilibrium models for seasonal dynamics of plankton biomass in four oligotrophic lakes. Canadian Journal of Fisheries and Aquatic Sciences 44: 1002–1017.CrossRefGoogle Scholar
  237. Watras, C.J. and Haney, J.F. 1980. Oscillations in the reproduction of Diaptomus leptopus (Copepoda: Calanoida) and their relation to rates of egg-clutch production. Oecologia 45: 94–103.CrossRefGoogle Scholar
  238. Webster, K.E. and Peters, R.H. 1978. Some size-dependent inhibitions of larger cladoceran filterers in filamentous suspensions. Limnology and Oceanography 23: 1238–1245.CrossRefGoogle Scholar
  239. Weider, L.J. and Lampert, W. 1985. Differential response of Daphnia genotypes to oxygen stress: respiration rates, haemoglobin content and low-oxygen tolerance. Oecologia 65: 487–491.CrossRefGoogle Scholar
  240. Wiens, J.A. 1977. On competition and variable environments. American Scientist 65: 590–597.Google Scholar
  241. Wiens, J.A. 1984. Resource systems, populations, and communities, pp. 397–436 in Price, P.W., Slobodchikoff, C.N., and Gaud, W.S. (editors), A New Ecology: Novel Approaches to Interactive Systems. John Wiley and Sons, New York, N.Y.Google Scholar
  242. Williamson, C.E. and Butler, N.M. 1986. Predation on rotifers by the suspension-feeding copepod Diaptomus pallidus. Limnology and Oceanography 31: 393–402.CrossRefGoogle Scholar
  243. Williamson, C.E. and Butler, N.M. 1987. Temperature, food, and mate limitation of copepod reproductive rates: separating the effects of multiple hypotheses. Journal of Plankton Research 9: 821–836.CrossRefGoogle Scholar
  244. Williamson, C.E., Butler, N.M., and Forcina, L. 1985. Food limitation in naupliar and adult Diaptomus pallidus. Limnology and Oceanography 1283–1290.Google Scholar
  245. Wilson, D.S. 1975. The adequacy of body size as a niche difference. American Naturalist 109: 769–784.CrossRefGoogle Scholar
  246. Wright, J.C. 1965. The population dynamics and production of Daphnia in Canyon Ferry Reservoir, Montana. Limnology and Oceanography 10: 583–590.CrossRefGoogle Scholar
  247. Zaret, T.M. 1980. Predation and Freshwater Communities. Yale University Press, New Haven, Connecticut.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg New York London Paris Tokyo 1989

Authors and Affiliations

  • William R. DeMott
    • 1
  1. 1.Department of Biological Sciences and Crooked Lake Biological StationIndiana-Purdue University at Fort WayneFort WayneUSA

Personalised recommendations