Skip to main content

Submarine Fallout Tephra from Subaerial Eruptions

  • Chapter
Pyroclastic Rocks

Abstract

Following classic studies of deep sea exploration in the 1940’s (Bramlette and Bradley, 1942; Neeb, 1943; Norin, 1948), a great deal of modern research has been done on marine ash layers, much of which is summarized by Kennett (1981). Marine ash layers were originally studied for their value as widespread stratigraphic markers, but deep penetration of the sea floor by drilling from the Glomar Challenger, compared to piston cores or dredging, has allowed assessment of paleovulcanicity extending as far back as Jurassic time, with major implications for understanding rates of sea floor spreading and the evolution of island arcs. Additionally, marine ash layers have supplied information about the cyclicity of volcanism, volcanic production rates and volumes, and the influence of large explosive eruptions on climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aramaki, S. and Ui, T., 1966. The Aira and Ata pyroclastic flows and related caldera depressions in southern Kyushu, Japan. Bull. Volcanol. 29, 29–47.

    Article  Google Scholar 

  • Bateson, J.H., 1965. Accretionary lapilli in a geosynclinal environment. Geol. Mag. 102, 1–7.

    Article  Google Scholar 

  • Binns, R.E., 1967. Drift pumice on postglacial raised shorelines of northern Europe. Acta Borealia, Tromso Museum, A. Scientia 24, 1–63.

    Google Scholar 

  • Binns, R.E., 1972. Composition and derivation of pumice on postglacial strandlines in northern Europe and the western Arctic. Geol. Soc. Amer. Bull. 83, 2303–2324.

    Article  Google Scholar 

  • Bogaard, P.v.d., 1983. Die Eruption des Laacher See Vulkans. Ruhr Univ. Bochum Ph. D. diss. 1–348.

    Google Scholar 

  • Bøggild, O.B., 1918. Den vulkanske aske i Moleret samt en oversigt over Danmarks aeldre Tertiaer-bjergarter. Dan. geol. Unders. roekkez, 2, 33, 1–159.

    Google Scholar 

  • Bowles, F.A., Jack, R.N. and Carmichael, I.S.E., 1973. Investigation of deep-sea volcanic ash layers from equatorial Pacific cores. Geol. Soc. Amer. Bull. 84, 2371–2388.

    Article  Google Scholar 

  • Bramlette, M.N. and Bradley, W.H., 1942. Geology and biology of North Atlantic deep-sea cores between Newfoundland and Ireland, pt. 1, Lithology and geologic interpretations. U.S. Geol. Survey Prof. Paper 196A, 1–55.

    Google Scholar 

  • Brenchley, P.J., 1972. The Cwm Clwyd Tuff, North Wales: a paleogeographical interpretation of some Ordovician ash-shower deposits. Yorkshire Geol. Soc. Proc. 39, 199–224.

    Article  Google Scholar 

  • Bryan, W.B., 1968. Low-potash dacite drift pumice from the Coral Sea. Geol. Mag. 105, 431–439.

    Article  Google Scholar 

  • Carey, S.N. and Sigurdsson, H., 1978. Deep-sea evidence for distribution of tephra from the mixed magma eruption of the Soufrière on St. Vincent, 1902: ash turbidites and air fall. Geology 6, 271–274.

    Article  Google Scholar 

  • Carey, S.N. and Sigurdsson, H., 1980. The Roseau Ash: deep-sea tephra deposits from a major eruption on Dominica, Lesser Antilles Arc. J. Volcanol. Geotherm. Res. 7, 67–86.

    Article  Google Scholar 

  • Chesterman, C.W., 1956. Pumice, pumicite and volcanic cinders in California. Calif. Div. Mines Bull. 174, 3–97.

    Google Scholar 

  • Church, B.N. and Johnson, W.M., 1980. Calculation of the refractive index of silicate glasses from chemical composition. Geol. Soc. Amer. Bull. 91, 619–625.

    Article  Google Scholar 

  • Coombs, D.S. and Landis, C.A., 1966. Pumice from the South Sandwich eruption of March, 1962, reaches New Zealand. Nature 209, 289–290.

    Article  Google Scholar 

  • Donn, W.L. and Ninokovich, D., 1980. Rate of Cenozoic explosive volcanism in the North Atlantic Ocean inferred from deep sea cores. J. Geophys. Res. 85, 5455–5460.

    Article  Google Scholar 

  • Drexler, J.W., Rose, W.I., Jr., Sparks, R.S.J, and Ledbetter, M.T., 1978. Geochemical correlation of Pleistocene rhyolitic ashes in Guatemala with deep-sea ash layers of the Gulf of Mexico, equatorial Pacific and Caribbean Sea. Amer. Geophys. Un. Trans. 59, 1105.

    Google Scholar 

  • Ewing, M., Heezen, B.C. and Ericson, D.B., 1959. Significance of the Worzel deep-sea ash. Nat. Acad. Sci.Proc. 45, 355–361.

    Article  Google Scholar 

  • Fisher, R.V., 1965. Settling velocity of glass shards. Deep-Sea Res. 12, 345–353.

    Google Scholar 

  • Fiske, R.S., 1969. Recognition and significance of pumice in marine pyroclastic rocks. Geol. Soc. Amer. Bull. 80, 1–8.

    Article  Google Scholar 

  • Francis, E.H., Smart, J.G.O. and Raisbeck, D.E., 1968. Westphalian volcanism at the horizon of the Black Rake in Derbyshire and Nottinghamshire. Yorkshire Geol. Soc. Proc. 36, 395–416.

    Article  Google Scholar 

  • Gass, I.G., Harris, P.G. and Holgate, M.W., 1963. Pumice eruptions in the area of South Sandwich Islands. Geol. Mag. 100, 321–330.

    Article  Google Scholar 

  • Grange, L.I., 1937. The geology of the Rotorua-Taupo Subdivision, Rotorua and Kaimanawa Divisions. N.Z. Geol. Survey Bull. 37, 1–138.

    Google Scholar 

  • Hahn, G.A., Rose, W.I., Jr. and Meyers, T., 1979. Geochemical correlation of genetically related rhyolitic ash-flow and air-fall ashes, central and western Guatemala and the equatorial Pacific. Geol. Soc. Amer. Sp. Paper 180, 101–112.

    Google Scholar 

  • Hansen, R., Lemke, R.W., Cattermole, J.M. and Gibbons, A.B., 1963. Stratigraphy and structure of the Rainier and USGS Tunnel areas Nevada Test Site. U.S. Geol. Survey Prof. Paper 382-A, 1–49.

    Google Scholar 

  • Hein, J.R., Scholl, D.W. and Miller, J., 1978. Episodes of Aleutian Ridge explosive volcanism. Science 199, 137–141.

    Article  Google Scholar 

  • Hogan, L.G., Scheiddegger, K.F., Kulm, L.D., Dymond, J. and Mikkelsen, N., 1978. Biostratigraphic and tectonic implications of 40 Ar-39 Ar dates of ash layers from the northeast Gulf of Alaska. Geol. Soc. Amer. Bull. 89, 1259–1264.

    Article  Google Scholar 

  • Horn, D.R., Delach, M.N. and Horn, B.M., 1969. Distribution of volcanic ash layers and turbidites in the north Pacific. Geol. Soc. Amer. Bull. 80, 1715–1724.

    Article  Google Scholar 

  • Horn, D.R., Horn, B.M. and Delach, M.N., 1970. Sedimentary provinces of the north Pacific. Geol. Soc. Amer. Mem. 126, 1–21.

    Google Scholar 

  • Huang, T.C., Watkins, N.D. and Shaw, D.M., 1974. Atmospherically transported volcanic glass in deep-sea sediments: Development of a separation and counting technique. Deep-Sea Res. 22, 185–196.

    Google Scholar 

  • Huang, T.C., Watkins, N.D. and Shaw, D.M., 1975. Atmospherically transported volcanic glass in deep-sea sediments: volcanism in sub-antarctic latitudes of the south Pacific during late Pleistocene time. Geol. Soc. Amer. Bull. 86, 1305–1315

    Article  Google Scholar 

  • Huang, T.C., Watkins, N.D. and Wilson, L., 1979. Deep-sea tephra from the Azores during the past 300,000 years: eruptive cloud height and ash volume estimates. Geol. Soc. Amer. Bull., Pt. II, 90, 235–288.

    Google Scholar 

  • Huang, T.C., Carey, S., Sigurdsson, H. and Davis, A., 1979. Correlations and contrasts of deep-sea ash deposits from the Lesser Antilles in the western equatorial Atlantic and eastern Caribbean at latitude 14° N. EOS 59, 1119.

    Google Scholar 

  • Huang, T.C., Watkins, N.D., Shaw, D.M. and Kennett, J.P., 1973. Atmospherically transported volcanic dust in South Pacific deep sea sedimentary cores at distances over 3000 km from the eruptive source. Earth Planet. Sci. Lett. 20, 119–124.

    Article  Google Scholar 

  • Huber, N.K. and Rinehart, D.D., 1966. Some relationships between the refractive index of fused glass beads and the petrologic affinity of volcanic rock suites. Geol. Soc. Amer. Bull. 77, 101–110.

    Article  Google Scholar 

  • Jezek, P.A., 1976. Compositional variation within and among volcanic ash layers in the Fiji Plateau area. J. Geol. 84, 595–616.

    Article  Google Scholar 

  • Keller, J., Ryan, W.B.F., Ninkovich, D. and Altherr, R., 1978. Explosive volcanic activity in the Mediterranean over the past 200,000 years as recorded in deep-sea sediments. Geol. Soc. Amer. Bull. 89, 591–604.

    Article  Google Scholar 

  • Kennett, J.P., 1981. Marine tephrochronology. In Emiliani, C., ed., The Oceanic Lithosphere. The Sea. Wiley-Interscience Publ., New York, 1373–1436.

    Google Scholar 

  • Kennett, J.P. and Thunell, R.C., 1975. Global increase in Quaternary volcanism. Science 187, 497–503.

    Article  Google Scholar 

  • Kennett, J.P. and Thunell, R.C., 1977. On explosive volcanism and climatic implications. Science 196, 1231–1234.

    Article  Google Scholar 

  • Kennett, J.P., McBirney, A.R. and Thunell, R.C., 1977. Episodes of volcanism in the circum-Pacific region. J. Volcanol. Geotherm. Res. 2, 145–163.

    Article  Google Scholar 

  • Ledbetter, M.T. and Sparks, R.S.J., 1979. Duration of large-magnitude explosive eruptions deduced from graded bedding in deep-sea ash layers. Geology 7, 240–244.

    Article  Google Scholar 

  • Lewis, K.B. and Kohn, B.P., 1973. Ashes, turbidites, and rates of sedimentation on the continental slope of Hawkes Bay. N.Z.J. Geol. Geophys. 16, 439–454.

    Google Scholar 

  • Lisitzin, A.P., 1972. Sedimentation in the world ocean. Soc. Econ. Paleont. Mineral. Sp. Publ. 17, 1–208.

    Google Scholar 

  • Lowe, D.R., 1975. Water escape structures in coarse-grained sediments. Sedimentology 22, 157–204.

    Article  Google Scholar 

  • Lowe, D.R. and LoPiccolo, R.D., 1974. The characteristics and origins of dish and pillar structures. J. Sed. Petrol. 44, 484–501.

    Google Scholar 

  • Mathews, W.H., 1951. A useful method for determining approximate composition of fine-grained igneous rocks. Amer. Mineral. 36, 92–101.

    Google Scholar 

  • McCoy, Jr., F.W., 1974. Late Quaternary sedimentation in the eastern Mediterranean Sea. Harvard Univ., Ph.D. diss. 1–132.

    Google Scholar 

  • Mellis, O., 1954. Volcanic ash-horizons in deep-sea sediments from the eastern Mediterranean. Deep- Sea Res. 2, 89–92.

    Article  Google Scholar 

  • Murray, J. and Renard, A.J., 1884. On the microscopic characters of volcanic ashes and cosmic dust and their distribution in the deep-sea deposits. Roy. Soc. Edinburgh Proc. 12, 474–495.

    Google Scholar 

  • Nayudu, Y.R., 1964b. Volcanic ash deposits in the Gulf of Alaska and problems of correlation of deep- sea ash deposits. Mar. Geol. 1, 194–212.

    Article  Google Scholar 

  • Neeb, G.A., 1943. The composition and distribution of the samples, II. In Snellius Expedition, v. 5, Geol. Research, pt. 3, Bottom Samples, E. J. Brill, Leiden, 55–238.

    Google Scholar 

  • Newell, R.E. and Walker, G.P.L., eds., 1981. Volcanism and climate. J. Volcanol. Geotherm. Res. 11, 1–92.

    Google Scholar 

  • Ninkovich, D. and Donn, W.L., 1976. Explosive Cenozoic volcanism and climatic implications. Science 194, 899–906.

    Article  Google Scholar 

  • Ninkovich, D. and Heezen, B.C., 1965. Santorini tephra. In Submarine geology and geophysics (Colston Papers, no. 17 ) 27, 413–453.

    Google Scholar 

  • Ninkovich, D. and Shackleton, N.J., 1975. Distribution, stratigraphic position and age of ash layer “L”, in the Panama Basin region. Earth Planet. Sci. Lett. 27, 20–34.

    Article  Google Scholar 

  • Ninkovich, D., Sparks, R.S.J, and Ledbetter, M.T., 1978. The exceptional magnitude and intensity of the Toba eruption, Sumatra: An example of the use of deep-sea tephra layers as a geological tool. Bull. Volcanol. 41, 286–298.

    Article  Google Scholar 

  • Ninkovich, D., Heezen, B.C., Conolly, J.R. and Burckle, L.H., 1964. South Sandwich tephra in deep-sea sediments. Deep-Sea Res. 11, 605–619.

    Google Scholar 

  • Ninkovich, D., Opdyke, N., Heezen, B.C. and Foster, H.J., 1966. Paleomagnetic stratigraphy, rates of deposition, and tephra chronology in North Pacific deep-sea sediments. Earth Planet. Sci. Lett. 1, 476–492.

    Article  Google Scholar 

  • Norin, R., 1940. Problems concerning volcanic ash layers of the Lower Tertiary of Denmark. Geol. Foren. Forh. 62, 31–44.

    Article  Google Scholar 

  • Norin, E., 1958. The sediments of the central Tyrrhenian Sea. In Pettersson, H., ed., Reports of the Swedish Deep-Sea Expedition, 1947–1948, 8, Sediment cores from the Mediterranean Sea and the Red Sea. Elanders Boktryckeri Aktiebolag, Göteborg, 1–136.

    Google Scholar 

  • Pedersen, A.K., Engell, J. and Rønsbo, J.G., 1975. Early Tertiary volcanism in the Skagerrak: New chemical evidence from ash-layers of the mo-clay of northern Denmark. Lithos 8, 255–268.

    Article  Google Scholar 

  • Pedersen, G.K. and Surlyk, F., 1977. Dish structures in Eocene volcanic ash layers, Denmark. Sedimentology 24, 581–590.

    Article  Google Scholar 

  • Porter, S.C., 1981. Recent glacier variations and volcanic eruptions. Nature 291, 139–142.

    Article  Google Scholar 

  • Richards, A.F., 1958. Trans-Pacific distribution of floating pumice from Isla San Benedicto, Mexico. Deep-Sea Res. 5, 29–35.

    Article  Google Scholar 

  • Richardson, D. and Ninkovich, D., 1976. Use of K2O, Rb, Zr, and Y versus SiO2 in volcanic ash layers of the eastern Mediterranean to trace their sources. Geol. Soc. Amer. Bull. 87, 110–116.

    Article  Google Scholar 

  • Ross, C.S. and Smith, R.L., 1955. Water and other volatiles in volcanic glass. Amer. Mineral. 40, 1071–1089.

    Google Scholar 

  • Rothe, P. and Koch, R., 1978. Miocene volcanic glass from DSDP Sites 368, 369 and 370. In Lancelot, Y., Seibold, E., et al., Init. Rpts. Deep Sea Drilling Proj. 41, 1061–1064.

    Google Scholar 

  • Ruddiman, W.F. and Glover, L.K., 1972. Vertical mixing of ice-rafted volcanic ash in North Atlantic sediments. Geol. Soc. Amer. Bull. 83, 2817–2836.

    Article  Google Scholar 

  • Scheidegger, K.F., Jezek, P.A. and Ninkovich, D., 1978. Chemical and optical studies of glass shards in Pleistocene and Pliocene ash layers from DSDP Site 192, northwest Pacific Ocean. J. Volcanol. Geotherm. Res. 4, 99–116.

    Article  Google Scholar 

  • Scheidegger, K.F., Corliss, J.B., Jezek, P.A. and Ninkovich, D., 1980. Compositions of deep-sea ash layers derived from north Pacific island arcs: Variations in time and space. J. Volcanol. Geotherm. Res. 7, 107–137.

    Article  Google Scholar 

  • Schiener, E.J., 1970. Sedimentology and petrography of three tuff horizons in the Caradocian sequence of the Bala area (North Wales). Geol. J. 7, 25–46.

    Article  Google Scholar 

  • Schmincke, H.-U., 1981. Ash from vitric muds in deep sea cores from the Mariana Trough and fore-arc regions (South Philippine Sea) (sites 453, 454, 455, 458, 459). In Hussong, D.M., Uyeda, S., et al., eds., Init. Rpts. Deep Sea Drilling Proj. 60, 473–481.

    Google Scholar 

  • Schmincke, H.-U., 1982a. Volcanic and chemical evolution of the Canary Islands. In von Rad, U., Hinz, K., Sarnthein, M. and Seibold, E., eds., Geology of the Northwest African Continental Mar-gin. Springer-Verlag, Berlin, Heidelberg, New York, 273–308.

    Google Scholar 

  • Schmincke, H.-U., 1983. Composition and origin of volcanic glasses from Leg 70. In Cann et al., eds., Init. Rpts. Deep Sea Drilling Proj. 69, 451–457.

    Google Scholar 

  • Schmincke, H.-U. and von Rad, U., 1979. Neogene evolution of Canary Island volcanism inferred from ash layers and volcaniclastic sandstones of DSDP site 397 (Leg 47A). In von Rad, U., Ryan, W.B.F., et al., eds., Init. Rpts. Deep Sea Drilling Proj. 47, pt. I, 703–725.

    Google Scholar 

  • Self, S. and Sparks, R.S.J., 1978. Characteristics of wide-spread pyroclastic deposits formed by the interaction of silicic magma and water. Bull. Volcanol. 41–3, 1–17.

    Google Scholar 

  • Settle, M., 1978. Volcanic eruption clouds and the thermal power output of explosive eruptions. J. Volcanol. Geotherm. Res. 3, 1727–1739.

    Article  Google Scholar 

  • Shackleton, N.J. and Opdyke, N.D., 1973. Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on a 108 and 106 year scale. Quat. Res. 3, 39–55.

    Article  Google Scholar 

  • Shackleton, N.J. and Opdyke, N.D., 1976. Oxygen isotope and paleomagnetic stratigraphy of Pacific core V28-239: Late Pliocene to Latest Pleistocene. Geol. Soc. Amer. Mem. 145, 449–464.

    Google Scholar 

  • Shaw, D.M., Watkins, N.D. and Huang, T.C., 1974. Atmospherically transported volcanic dust in deep sea sediments: theoretical considerations. J. Geophys. Res. 79, 3087–3097.

    Article  Google Scholar 

  • Sigurdsson, H. and Loebner, B., 1981. Deep sea record of Cenozoic explosive volcanism in the North Atlantic. In Self, S. and Sparks, R.S.J., eds., Tephra studies. D. Reidel Publ. Co., Dordrecht, Holland, 289–316.

    Google Scholar 

  • Sisson, T.W., 1982. Sedimentary characteristics of the airfall deposit produced by the major pyroclastic surge of May 18,1980 at Mount St. Helens, Washington. Univ. Calif. Santa Barbara, M.A. thesis,82013a–145.

    Google Scholar 

  • Slaughter, M. and Earley, J.W., 1965. Mineralogy and geological significance of the Mowry Bentonites, Wyoming. Geol. Soc. Amer. Sp. Paper 83, 1–116.

    Google Scholar 

  • Sonayada, T.J., 1971. Normal and accelerated sinking of phytoplankton in the sea. Mar. Geol. 11, 105–122.

    Article  Google Scholar 

  • Sparks, R.S.J, and Huang, T.C., 1980. The volcanological significance of deep-sea ash layers associated with ignimbrites. Geol. Mag. 117, 425–436.

    Article  Google Scholar 

  • Stauffer, P.H., 1967. Grain-flow deposits and their implications, Santa Ynez Mountains, California. J. Sed. Petrol. 37, 487–508.

    Google Scholar 

  • Steen-Mclntyre, V.C., 1975. Hydration and superhydration of tephra glass - a potential tool for estimating age of Holocene and Pleistocene ash beds. In Suggate, R.P. and Cresswell, M.M., eds., Quaternary studies, Wellington, Roy. Soc. N.Z., 271–278.

    Google Scholar 

  • Stewart, R.J., 1975. Late Cenozoic explosive eruptions in the Aleutian and Kuril Island arcs. Nature 258, 505–507.

    Article  Google Scholar 

  • Sutherland, F.L., 1965. Dispersal of pumice, supposedly from the March, 1962, South Sandwich Islands eruption, on southern Australian shores. Nature 207, 1332–1335.

    Article  Google Scholar 

  • Suzuki, T., Katsui, Y. and Nakamura, T., 1973. Size distribution of the Tarumai Ta-b pumice-fall deposit. 18, 47–64.

    Google Scholar 

  • Thunell, R., Federman, A., Sparks, S. and Williams, D., 1979. The age, origin and volcanological significance of the Y-5 ash layer in the Mediterranean. Quat. Res. 12, 241–253.

    Article  Google Scholar 

  • Van Bemmelen, R.W., 1949. The Geology of Indonesia. General Geology. Govt. Printing Office, The Hague, 1 A, 1–732.

    Google Scholar 

  • Vogt, P.R., 1979. Global magmatic episodes: new evidence and implication for the steady-state mid- oceanic ridge. Geology 7, 93–98.

    Article  Google Scholar 

  • Watkins, N.D. and Huang, T.C., 1977. Tephras in abyssal sediment east of the North Island, New Zealand: Chronology, paleowind velocity, and paleoexplosivity. N.Z. J. Geol. Geophys. 20, 179–198.

    Google Scholar 

  • Watkins, N.D., Sparks, R.S.J., Sigurdsson, H., Huang, T.C., Federman, A., Carey, S. and Ninkovich, D., 1978. Volume and extent of the Minoan tephra from Santorini: new evidence from deep-sea sediment cores. Nature 271, 122–126.

    Article  Google Scholar 

  • Wentworth, C.M., Jr., 1967. Dish structure; a primary sedimentary structure in coarse turbidites. Amer. Assoc. Petrol. Geol. Bull. 51, 485.

    Google Scholar 

  • Williams, H., 1941. Calderas and their origin. Univ. Calif. Publ. Geol. Sci. 25, 239–346.

    Google Scholar 

  • Wilson, L., Sparks, R.S.J., Huang, T.C. and Watkins, N.D., 1978. The control of volcanic column eruption heights by eruption energetics and dynamics. J. Geophys. Res. 83, 1829–1836.

    Article  Google Scholar 

  • Worzel, L.J., 1959. Extensive deep-sea sub-bottom reflections identified as white ash. U.S. Natl. Acad. Sci. Proc. 45, 349–355.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fisher, R.V., Schmincke, HU. (1984). Submarine Fallout Tephra from Subaerial Eruptions. In: Pyroclastic Rocks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74864-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74864-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51341-4

  • Online ISBN: 978-3-642-74864-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics