Skip to main content

The Hemopoietic Growth Factor, Granulocyte-Macrophage Colony Stimulating Factor

  • Chapter
Book cover Growth Factors, Differentiation Factors, and Cytokines

Abstract

The notion that soluble growth factors are, at least in part, responsible for regulating the proliferation and differentiation of hemopoietic cells was substantiated in 1906 with the discovery of erythropoietin, a molecule required for the final stages of maturation of erythroid cells. However, the identification of factors acting on myeloid cells had to await the development in the mid 1960s of techniques for the clonal culture of such cells in vitro (Pluznick and Sachs 1965; Bradley and Metcalf 1966). In such culture systems, hemopoietic progenitor cells (typically from adult bone marrow or foetal liver) plated in semi-solid cultures give rise to colonies of normal hemopoietic cells if a source of factor stimulating their development is present - hence the operational term for such factors: colony stimulating factors (CSFs). In the mid 1960s fairly complex sources of such factors were used; pokeweed mitogen-stimulated spleen conditioned medium, for example. However, in the past two decades many of the active factors in such broths have been biologically characterized, biochemically purified and molecularly cloned (see Metcalf 1984, 1987 for reviews). Indeed, several hemopoietic growth factors are currently undergoing various clinical trials and face an exciting therapeutic future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barlow DP, Bucan M, Lehrach H, Hogan BLM, Gough NM (1987) Close genetic and physical linkage between the murine haemopoietic growth factor genes GM-CSF and multi-CSF (IL- 3). EMBO J 6:617–623

    PubMed  CAS  Google Scholar 

  • Bradley TR, Metcalf D (1966) The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci 44:287–300

    Article  PubMed  CAS  Google Scholar 

  • Broudy VC, Kaushansky K, Segal GM, Harlan JM, Adamson JW (1986) Tumour necrosis factor type a stimulates human endothelial cells to produce granulocyte/macrophage colony stimulating factor. Proc Natl Acad Sci USA 83:7467–7471

    Article  PubMed  CAS  Google Scholar 

  • Cantrell MA, Anderson D, Cerretti DP, Price V, McKereghan K, Tushinski RJ, Mochizuki DY, Larsen A, Grabstein K, Gillis S, Cosman D (1985) Cloning, sequence and expression of human granulocyte/macrophage colony stimulating factor. Proc Natl Acad Sci USA 82:6250–6254

    Article  PubMed  CAS  Google Scholar 

  • Cook WD, Metcalf D, Nicola NA, Burgess AW, Walker F (1985) Malignant transformation of a growth factor-dependent myeloid cell line by Abelson virus without evidence of an autocrine mechanism. Cell 41:677–683

    Article  PubMed  CAS  Google Scholar 

  • Delamarter JF, Mermod JJ, Liang CM, Eliason JF, Thatcher DR (1985) Recombinant murine GM-CSF from E. coli has high biological activity and is neutralized by a specific antiserum. EMBO J 4:2575–2581

    PubMed  CAS  Google Scholar 

  • Dührsen U (1988) In vitro growth patterns and autocrine production of hemopoietic colony stimulating factors: analysis of leukemic populations arising in irradiated mice from cells of an injected factor-dependent continuous cell line. Leukemia 2:334–342

    PubMed  Google Scholar 

  • Dührsen U, Metcalf D (1988) A model system for leukemic transformation of immortalized hemopoietic cells in irradiated recipient mice. Leukemia 2:329–333

    PubMed  Google Scholar 

  • Gough NM, Gough J, Metcalf D, Kelso A, Grail D, Nicola NA, Burgess AW, Dunn AR (1984) Molecular cloning of cDNA encoding a murine haematopoietic growth regulator, granulocyte-macrophage colony stimulating factor. Nature 309:763–767

    Article  PubMed  CAS  Google Scholar 

  • Gough NM, Metcalf D, Gough J, Grail D, Dunn AR (1985) Structure and expression of the mRNA for murine granulocyte-macrophage colony stimulating factor. EMBO J 4:645–653

    PubMed  CAS  Google Scholar 

  • Gough NM, Grail D, Gearing DP, Metcalf D (1987) Mutagenesis of murine granulocyte/macrophage colony-stimulating factor reveals critical residues near the N terminus. Eur J Biochem 169:353–358

    Article  PubMed  CAS  Google Scholar 

  • Hadden JW (1988) Transmembrane signals in the activation of T lymphocytes by mitogenic antigens. Immunol Today 9:235–239

    Article  PubMed  CAS  Google Scholar 

  • Hamilton TA, Adams DO (1987) Molecular mechanisms of signal transduction in macrophages. Immunol Today 8:151–158

    Article  CAS  Google Scholar 

  • Hermann F, Oster W, Meuer SC, Lindermann A, Mertelsmann RH (1988) Interleukin 1 stimulates T lymphocytes to produce granulocyte-monocyte colony stimulating factor. J Clin Invest 81:1415–1418

    Article  Google Scholar 

  • Huebner K, Isobe M, Croce CM, Golde DW, Kaufman SE, Gasson JC (1985) The human gene encoding GM-CSF is at 5q21–q32, the chromosome region deleted in the 5q anomaly. Science 230:1282–1285

    Article  PubMed  CAS  Google Scholar 

  • Imboden JB, Weiss A, Stobo JD (1985) Transmembrane signalling by the T3-antigen receptor complex. Immunol Today 6:328–331

    Article  CAS  Google Scholar 

  • Johnson GR, Gonda TJ, Metcalf D, Hariharan IK, Cory S (1989) A lethal myeloproliferative syndrome in mice transplanted with bone marrow cells infected with a retrovirus expressing granulocyte-macrophage colony-stimulating factor. EMBO J 8:441–448

    PubMed  CAS  Google Scholar 

  • Kaushansky K, O’Hara PJ, Hart CE, Farstrom JW, Hagen FS (1987) Role of carbohydrate in the function of human granulocyte-macrophage colony stimulating factor. Biochemistry 26:4861–4867

    Article  PubMed  CAS  Google Scholar 

  • Kelso A, Gough N (1987) Expression of hemopoietic growth factor genes in murine T lymphocytes. In: Webb DR, Goeddel DV (eds) The lymphokine, vol 13. Academic, New York pp 209–238

    Google Scholar 

  • Kelso A, Metcalf D, Gough NM (1986) Independent regulation of granulocyte-macrophage colony-stimulating factor and multi-lineage colony stimulating factor production in T lymphocyte clones. J Immunol 136:1718–1725

    PubMed  CAS  Google Scholar 

  • Koeffler HP, Gasson J, Tobler A (1988) Transcriptional and post-transcriptional modulation of myeloid colony-stimulating factor expression by tumour necrosis factor and other agents. Mol Cell Biol 8:3432–3438

    PubMed  CAS  Google Scholar 

  • Koury MJ, Pragnell IB (1982) Retroviruses induce granulocyte-macrophage colony stimulating activity in fibroblasts. Nature 299:638–640

    Article  PubMed  CAS  Google Scholar 

  • Koury MJ, Balmain A, Pragnell IB (1983) Induction of granulocyte-macrophage colony stimulating activity in mouse skin by inflammatory agents and tumour promoters. EMBO J 2:1877–1882

    PubMed  CAS  Google Scholar 

  • Lang RA, Metcalf D, Gough NM, Dunn AR, Gonda TJ (1985) Expression of a haemopoietic growth factor cDNA in a factor-dependent cell line results in autonomous growth and tumorigenicity. Cell 43:531–542

    Article  PubMed  CAS  Google Scholar 

  • Lang RA, Metcalf D, Cuthbertson RA, Lyons I, Stanley E, Kelso A, Kannourakis G, Williamson DJ, Klintworth GK, Gonda TJ, Dunn AR (1987) Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness and a fatal syndrome of tissue damage. Cell 51:675–686

    Article  PubMed  CAS  Google Scholar 

  • Le Beau MM, Westbrook CA, Diaz MO, Larson RA, Rowley JD, Gasson JC, Golde DW, Sherr CJ (1986) Evidence for the involvement of GM-CSF and FMS in the deletion (5q) in myeloid disorders. Science 231:984–987

    Article  PubMed  Google Scholar 

  • Metcalf D (1984) The haemopoietic colony stimulating factors. Elsevier, Amsterdam

    Google Scholar 

  • Metcalf D (1987) The molecular control of normal and leukaemic granulocytes and macrophages. Proc R Soc Lond [Biol] 230:389–423

    Article  CAS  Google Scholar 

  • Miyatake S, Otsuka T, Yokota T, Lee F, Arai KI (1985) Structure of the chromosomal gene for granulocyte-macrophage colony stimulating factor: comparison of the mouse and human genes. EMBO J 4:2561–2568

    PubMed  CAS  Google Scholar 

  • Moonen P, Mermod JJ, Ernst JF, Mirshi M, Delamarter JF (1987) Increased biological activity of deglycosylated recombinant human granulocyte/macrophage colony stimulating factor produced by yeast or animal cells. Proc Natl Acad Sci USA 84:4428–4431

    Article  PubMed  CAS  Google Scholar 

  • Moore MAS, Spitzer G, Williams N, Metcalf D, Buckley J (1974) Agar culture studies in 127 cases of untreated acute leukaemia: the prognostic value of reclassification of leukaemia according to in vitro growth characteristics. Blood 44:1–18

    PubMed  CAS  Google Scholar 

  • Munker R, Gasson J, Ogawa M, Koeffler HP (1986) Recombinant human TNF induces production of granulocyte-monocyte colony stimulating factor. Nature 323:79–82

    Article  PubMed  CAS  Google Scholar 

  • Nicola NA, Metcalf D (1985) The colony-stimulating factors and myeloid leukaemia. Cancer Surveys 4:789–815

    PubMed  CAS  Google Scholar 

  • Nicola NA, Burgess AW, Metcalf D (1979) Similar molecular properties of granulocyte-macrophage colony stimulating factors produced by different mouse organs in vitro and in vivo. J Biol Chem 254:5290–5299

    PubMed  CAS  Google Scholar 

  • Nimer SD, Golde DW (1987) The 5q abnormality. Blood 70:1705–1712

    PubMed  CAS  Google Scholar 

  • Nimer SD, Morita EA, Martis MJ, Washsman W, Gasson JC (1988) Characterization of the human granulocyte-macrophage colony stimulating factor promoter region by genetic analysis: correlation with DNAase I footprinting. Mol Cell Biol 8:1979–1984

    PubMed  CAS  Google Scholar 

  • Pluznick DH, Sachs L (1965) The cloning of normal “mast” cells in tissue cultures. J Cell Comp Physiol 66:319–324

    Article  Google Scholar 

  • Seelentag WK, Mermod JJ, Montesano R, Vassalli P (1987) Additive effects of interleukin 1 and tumour necrosis factor-a on the accumulation of the three granulocyte and macrophage colony stimulating factor mRNA’s in human endothelial cells. EMBO J 6:2261–2265

    PubMed  CAS  Google Scholar 

  • Shannon MF, Gamble JR, Vadas MA (1988) Nuclear proteins interacting with the promoter region of the human granulocyte/macrophage colony-stimulating factor gene. Proc Natl Acad Sci USA 85:674–678

    Article  PubMed  CAS  Google Scholar 

  • Shannon MF, Vadas MA, Gamble JR (1989b) Transcriptional regulation of GM-CSF production: two nuclear proteins bind to the human GM-CSF promoter region. J Cell Biochem (in press)

    Google Scholar 

  • Shrimser JL, Rose K, Simona MG, Wingfield P (1987) Characterization of human and mouse granulocyte-macrophage colony-stimulating factors derived from Escherichia coli. Biochem J 247:195–199

    Google Scholar 

  • Sparrow LG, Metcalf D, Hunkapiller MW, Hood LE, Burgess AW (1985) Purification and partial amino acid sequence of asialo murine granulocyte-macrophage colony-stimulating factor. Proc Natl Acad Sci USA 82:292–296

    Article  PubMed  CAS  Google Scholar 

  • Sporn MB, Roberts AB (1985) Autocrine growth factors and cancer. Nature 313:745–747

    Article  PubMed  CAS  Google Scholar 

  • Stanley E, Metcalf D, Sobieszczuk P, Gough NM, Dunn AR (1985) The structure and expression of the murine gene encoding granulocyte-macrophage colony-stimulating factor: evidence for utilization of alternative promotors. EMBO J 4:2569–2573

    PubMed  CAS  Google Scholar 

  • Stocking C, Löliger C, Kawai M, Suciu S, Gough N, Ostertag W (1988) Identification of genes involved in growth autonomy of haematopoietic cells by analysis of factor-independent mutants. Cell 53:869–879

    Article  PubMed  CAS  Google Scholar 

  • Thorens B, Mermod JJ, Vassalli P (1987) Phagocytosis and inflammatory stimuli induce GM- CSF mRNA in macrophages through posttranscriptional regulation. Cell 48:671–679

    Article  PubMed  CAS  Google Scholar 

  • Wingfield P, Graber P, Craig S, Pain RH (1988) The conformation and stability of recombinant- derived granulocyte-macrophage colony stimulating factors. Eur J Biochem 173:65–72

    Article  PubMed  CAS  Google Scholar 

  • Wong GG, Witek JS, Temple PA, Wilkens KM, Leary AG, Luxenberg DP, Jones SS, Brown EL, Kay RM, Orr EC, Shoemaker C, Golde DW, Kaufman RJ, Hewick RM, Wang EA, Clark SC (1985a) Human GM-CSF: molecular cloning of the complementary DNA and purification of the natural and recombinant proteins. Science 228:810–815

    Article  PubMed  CAS  Google Scholar 

  • Wong GG, Witek JS, Temple PA, Wilkens KM, Leary AG, Luxenberg DP, Jones SS, Brown EL, Kay RM, Orr EC, Shoemaker C, Golde DW, Kaufman RJ, Hewick RM, Clark SC, Wang EA (1985b) Molecular cloning of human and gibbon T-cell-derived GM-CSF cDNAs and purification of the natural and recombinant human proteins. In: Feramisco J, Ozanne B, Stiles C (eds) Cancer cells, vol 3. Cold Spring Harbor, New York, pp 235–242

    Google Scholar 

  • Wong GG, Witek-Giannotti JS, Temple PA, Kriz R, Ferenz C, Hewick RM, Clark SC, Ikebuchi K, Ogawa M (1988) Stimulation of murine hemopoietic colony formation by human IL-6. J Immunol 140:3040–3044

    PubMed  CAS  Google Scholar 

  • Yang YC, Kovac S, Kriz R, Wolf S, Clark SC, Wellems TE, Nienhuis A, Epstein N (1988) The human genes for GM-CSF and IL-3 are closely linked in tandem on chromosome 5. Blood 71:958–961

    PubMed  CAS  Google Scholar 

  • Young DC, Wagner K, Griffen JD (1987) Constitutive expression of the granulocyte-macrophage colony stimulating factor gene in acute myeloblastic leukaemia. J Clin Invest 79:100–106

    Article  PubMed  CAS  Google Scholar 

  • Zsebo KM, Yuschenkoff VN, Schiffer S, Chang D, McCall E, Dinarello CA, Brown MA, Altrock B, Bagby GC (1988) Vascular endothelial cells and granulopoiesis: interleukin-1 stimulates release of G-CSF and GM-CSF. Blood 71:99–103

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gough, N.M. (1990). The Hemopoietic Growth Factor, Granulocyte-Macrophage Colony Stimulating Factor. In: Habenicht, A. (eds) Growth Factors, Differentiation Factors, and Cytokines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74856-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74856-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74858-5

  • Online ISBN: 978-3-642-74856-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics