Skip to main content

Abstract

From the immense amount of geochronologically relevant literature, the attempt was made in this book to survey, on the one hand, the primary literature, on the other hand, the most recent publications. Some of the reviewers, quite correctly, criticized that this has resulted in neglecting important publications that reflect the development of the individual methods. We have attempted to avoid this in the following compilation, which also includes secondary literature that seems to us to give a particularly valuable presentation or contain an extensive compilation of references. We hope that we have found an acceptable compromise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

Geochonology Textbooks

  • Aitken MJ (1974) Physics and Archaeology. University Press, Oxford

    Google Scholar 

  • Bates RL, Jackson JA (eds) (1980) Glossary of Geology: 751 pp, Am Geol Instr; Falls Church, Virginia

    Google Scholar 

  • Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (1984) Milankovitch and Climate, Vol I and II. 895 pp Reidel Publ Comp, Dordrecht

    Google Scholar 

  • Bishop WW, Miller JA (eds) (1972) Calibration of Hominoid Evolution. 487 pp; Scottish Academic Press

    Google Scholar 

  • Craig H, Miller SL, Wasserburg GJ (eds) (1964) Isotopic and Cosmic Chemistry. 553 pp; North-Holland, Amsterdam

    Google Scholar 

  • Currie LA (ed) (1982) Nuclear and Chemical Dating Techniques. Interpreting the Environmental Record. Am Chem Soc Symp Ser 176. 516 pp, ACS; Washington DC

    Google Scholar 

  • Dalrymple GB, Lanphere MA (1969) Potassium-Argon Dating. Principles, Techniques and Applications to Geochronology. 258 pp; WH Freeman; San Francisco

    Google Scholar 

  • Doe Br (1970) Lead Isotopes. 137pp; Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Faul H (1966) Ages of Rocks, Planets and Stars. 109 pp; McGraw-Hill, New York

    Google Scholar 

  • Faure G (1986) Principles of Isotope Geology (2nd edn). 589 pp; Wiley, New York

    Google Scholar 

  • Faure G, Powell JL (1972) Strontium Isotope Geology. 188 pp; Springer, Berlin, Heidelberg

    Google Scholar 

  • Fleischer RL, Price PB, Walker RM (1975) Nuclear Tracks in Solids: 605 pp; University of California, Berkeley, Los Angeles, London.

    Google Scholar 

  • Fleming SJ (1976) Dating in Archaeology. A Guide to Scientific Techniques. London

    Google Scholar 

  • Fritz P, Fontes J CH (eds) (1980) Handbook of Environmental Isotope Geochemistry, The Terrestrial Environment A, Vol 1: 546 pp; Elsevier, Amsterdam

    Google Scholar 

  • Fritz P, Fontes J CH (eds) (1986) Handbook of Environmental Isotope Geochemistry, The Terrestrial Environment B, Vol 2: 557 pp, Elsevier, Amsterdam

    Google Scholar 

  • Geyh MA (1980b) Einführung in die Methoden der physikalischen und chemischen Altersbestimmung; 276 pp; Wissenschaftliche Buchgesellschaft, Darmstadt

    Google Scholar 

  • Hamilton EI (1965) Applied Geochronology. 267 pp; Academic Press, London, New York

    Google Scholar 

  • Hamilton EI, Farquhar (eds) (1968) Radiometric Dating for Geologists. 506 pp; Interscience, London

    Google Scholar 

  • Handbook of Chemistry and Physics, ca 2500 pp; CRC Press, London (annually new edition)

    Google Scholar 

  • Harper CT (ed) (1973) Geochronology: Radiometric Dating of Rocks and Minerals. 469 pp; Dowden, Hutchinson and Ross, Stroudsburg, Pa

    Google Scholar 

  • Hoefs J (1980) Stable Isotope Geochemistry (2nd edn). 208 pp, Springer Berlin, Heidelberg, New York

    Google Scholar 

  • Hurford AJ, Jäger E, Ten Cate JAM (1986) Dating Young Sediments. COOP Techn Secr: 393 pp; (Proc workshop Beijing, China, Sept. 1985)

    Google Scholar 

  • Ivanovich M, Harmon RS (eds) (1982) Uranium Series Disequilibrium. Applications to Environmental Problems. 571 pp; Clarendon Press, Oxford

    Google Scholar 

  • Jäger E, Hunziker JC (1979) Lectures in Isotope Geology. 329 pp; Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Mahaney WC (ed) (1984) Quaternary Dating Methods. 431pp; Elsevier, Oxford

    Google Scholar 

  • Michels JW (1973) Dating Methods in Archaeology. 240 pp; Academic Press, New York, London

    Google Scholar 

  • Moser H, Rauert W (1980) Isotopenmethoden in der Hydrologie. 400 pp; Gebrüder Borntraeger, Berlin Stuttgart

    Google Scholar 

  • Odin GS (ed) (1982) Numerical Dating in Stratigraphy (2 vol). 1040 pp; John Wiley, Chinchester, UK

    Google Scholar 

  • Rankama K (1963) Progress in Isotope Geology. 705 pp; Interscience, London

    Google Scholar 

  • Roth E, Poty B (eds) (1985) Methods de datation par les phenomènes nucleaires naturels—Applications. 642 pp; Masson, Paris

    Google Scholar 

  • Roth E, Poty B (eds) (1989) Nuclear Methods of Dating. Dordrecht (Kluwer)

    Google Scholar 

  • Russell RD, Farquhar RM (1960) Lead Isotopes in Geology. 243 pp; Interscience, John Wiley, New York

    Google Scholar 

  • Rutter N, Brigham-Grette, Catto N (eds) (1989) Applied Quaternary Geochronology. Quatern Int 1:1–166

    Google Scholar 

  • Schaeffer OA, Zähringer J (eds) (1966) Potassium Argon Dating. 234 pp; Springer, Berlin, Heidelberg

    Google Scholar 

  • Tite MS (1981) Methods of Physical Examinations in Archaeology. 385 pp; Seminar Press, London, New York

    Google Scholar 

  • York D, Farquar RM (1972) The Earth’s Age and Geochronology. 178 pp, Pergamon Press. Oxford, New York, Toronto, Sydney, Braunschweig

    Google Scholar 

  • Zimmerman MR (ed) (1986) Dating and Age Determination of Biological Materials. 300 pp; Croom Helm, Beckenham, UK

    Google Scholar 

References

  • Abelson PH (1954) Amino acids in fossils. Science 119:576

    Google Scholar 

  • Abelson PH (1955) Paleobiochemistry. Carnegie Inst Wash Yearbook 54:107–109

    Google Scholar 

  • Åberg G, Bollmark B (1985) Retention of U and Pb in zircons from shocked granite in the Siljan impact structure, Sweden. Earth Planet Sci Lett 74:347–349

    Google Scholar 

  • Ahrens LH (1951) The feasibility of a calicium method for the determination of geological age. Geochim Cosmochim Acta 1:312–316

    Google Scholar 

  • Aitken MJ (1967) Thermoluminesce. Science Jour 1:32–38

    Google Scholar 

  • Aitken MJ (1974) Physics and Archaeology. University Press, Oxford

    Google Scholar 

  • Aitken MJ (1976) Thermoluminescent age evaluation and assessment of error limits: revised system. Archaeometry 18:233–239

    Google Scholar 

  • Aitken MJ (1978) Archaeological Involvements of Physics. Physics Reports. A Review of Physics Letters 40C:277–351

    Google Scholar 

  • Aitken MJ (1984) Non-linear growth: allowance for alpha particle contribution. Ancient TL 2:2

    Google Scholar 

  • Aitken MJ (1985) Thermoluminescence Dating. Academic Press, London, 359 pp

    Google Scholar 

  • Aitken MJ, Mejdahl V (coeds) (1979) A specialist seminar on thermoluminescence dating— Oxford, Research Laboratory for Archaeology and History of Art, July 1978. PACT 2 & 3, Brussels

    Google Scholar 

  • Aitken MJ, Mejdahl V (coeds) (1982) Second specialist seminar on thermoluminescence dating, Oxford, 1980. PACT 6:562 p; Brussels

    Google Scholar 

  • Aitken MJ, Smith BW (1988) Optical dating: recuperation after bleaching. Quatern Res Rev 7:387–393

    Google Scholar 

  • Alaerts L, Lewis RS, Anders E (1979) Isotopic anomalies of noble gases in meteorites and their origins III. LL-chondrites. Geochim Cosmochim Acta 43:1399–1415

    Google Scholar 

  • Albarède F (1982) The 39Ar/40Ar technique of dating. In: Odin GS (ed.) Numerical dating in stratigraphy. Wiley, Chichester pp 181–197

    Google Scholar 

  • Alburger DE, Harbottle G, Norton EF (1986) Half-life of 32Si. Earth Planet Sci Letters 78:168–176

    Google Scholar 

  • Aldrich LT, Nier AO (1948) Argon-40 in potassium minerals. Phys Rev 74:876–877

    Google Scholar 

  • Alder B, Oeschger H, Wasson JT (1967) Aluminium-26 in deep-sea sediments. In: Radioactive Dating and Methods of Low-Level Counting: 189–198; IAEA, Vienna

    Google Scholar 

  • Aleinikoff JN (1983) U-Th-Pb systematics of zircon inclusions in rock-forming minerals: a study of armoring against isotopic loss using the Sherman granite of Colorado-Wyoming, USA. Contrib Mineral Petrol 83:259–269

    Google Scholar 

  • Alexander EC Jr (1978) Noble gases. In: Wedepohl KH (ed) Handbook of geochemistry, vol II-I. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Alexander EC Jr, Coscio MR Jr, Dragon JC, Pepin RO, Saito K (1977) K/Ar dating of lunar soils III: comparison of 39Ar-40Ar and conventional techniques; 12032 and the age of Copernicus. Proc Lunar Sci Conf 8th, pp 2725-2740

    Google Scholar 

  • Allègre CJ (1968) 230Th dating of volcanic rocks: a comment. Earth Planet Sci Lett 5:209–210

    Google Scholar 

  • Allègre CJ (1969) Comportement des systèmes U-Th-Pb dans le manteau superieur et modèle d’evolution de ce dernier au cours des temps géologiques. Earth Planet Sci Lett 5:261–269

    Google Scholar 

  • Allègre CJ (1987) Isotope geodynamics. Earth Planet Sci Lett 86:175–203

    Google Scholar 

  • Allègre CJ, Condomines M (1976) Fine chronology of vulcanic processes using 234U-230Th systematics. Earth Planet Sci Lett 28:395–406

    Google Scholar 

  • Allègre CJ, Ben Othman D (1980) Nd-Sr isotopic relationship in granitoid rocks and continental crust development: a chemical approach to orogenesis. Nature (Lond) 286:335–342

    Google Scholar 

  • Allègre CJ, Luck JM (1980) Osmium isotopes as petrogenetic and geological tracers. Earth Planet Sci Lett 48:148–154

    Google Scholar 

  • Allègre CJ, Rousseau D (1984) The growth of the continent through geological time studied by Nd isotope analysis of shales. Earth Planet Sci Lett 67:19–34

    Google Scholar 

  • Allègre CJ, Albarède F, Grünenfelder M, Köppel V (1974) 238U/206Pb-235U/207Pb-232Th/208Pb zircon geochronology in alpine and non-alpine environments. Contrib Mineral Petrol 43:163–194

    Google Scholar 

  • Allègre CJ, Ben Othman D, Polve M, Richard P (1979) Nd-Sr isotopic correlation in mantle materials and geodynamic consequences. Phys Earth Planet Inter 19:293–306

    Google Scholar 

  • Aller RC, DeMaster DJ (1984) Estimates of particle flux and reworking at the deep-sea floor using 234Th/238U disequilibrium. Earth Planet Sci Lett 67:308–318

    Google Scholar 

  • Allison GB (1982) The relationship between 18O and deuterium in water in sand columns undergoing evaporation. J Hydrol 55:163–169

    Google Scholar 

  • Allsopp HL (1961) Rb-Sr measurements on total rock and separated mineral fractions from the Old Granite of the Central Transvaal. J Geophys Res 66:1499–1508

    Google Scholar 

  • Alvarez W, Alvarez LW, Asaro F, Michel HV (1979) Experimental evidence in support of an extraterrestrial trigger for the Cretaceous-Tertiary extinctions. EOS 60:734

    Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108

    Google Scholar 

  • Ambach W, Dansgaard W (1970) Fall-out and climatic studies in firn cores from Carreflow, Greenland. Earth Planet Sci Lett 8:311–316

    Google Scholar 

  • Amin BS, Kharkar DP, Lal D (1966) Cosmogenic 10Be and 26A1 in marine sediments. Deep-Sea Res 13:805–824

    Google Scholar 

  • Amin BS, Lal D, Somayajulu BLK (1975) Chronology of marine sediments using the 10Be method: Intercomparison with other methods. Geochim Cosmochim Acta 39:1187–1192

    Google Scholar 

  • Andersen T, Taylor PN (1988) Pb isotope geochemistry of the Fen carbonatite complex, S.E. Norway: age and petrogenetic implications. Geochim Cosmochim Acta 52:209–215

    Google Scholar 

  • Anderson DL (1982) Isotopic evolution of the mantle: the role of magma mixing. Earth Planet Sci Lett 57:1–12

    Google Scholar 

  • Anderson EC, Libby WF, Weinhouse S, Reid AF, Kirshenbaum AD, Grosse AV (1947) Natural radiocarbon from cosmic radiation. Phys Rev 72:931–936

    Google Scholar 

  • Anderson RF, Bacon MP, Brewer PG (1983) Removal of 230Th and 231Pa at ocean margins. Earth Planet Sci Lett 66:73–90

    Google Scholar 

  • André L, Deutsch S (1985) Very low-grade metamorphic Sr isotopic resettings of magmatic rocks and minerals: evidence for a late Givetian strike-slip division of the Brabant Massif, Belgium. J Geol Soc Lond 142:911–923

    Google Scholar 

  • Andree M, Moor E, Beer J, Oeschger H, Stauffer B, Bonani G, Hofmann HJ, Morenzoni E, Nessi M, Suter M, Wölfli W (1984) 14C dating of polar ice. Nucl Instrum Methods 233(B5): 385–388

    Google Scholar 

  • Andree M, Oeschger H, Broecker WS, Beavon N, Mix A, Bonani G, Hofmann HJ, Morenzoni E, Nessi M, Suter M, Wölfli W (1986) AMS radiocarbon dates on foraminifera from deep sea sediments. Radiocarbon 28(2A): 424–428

    Google Scholar 

  • Andres G, Egger R (1985) A new tritium interface method for determining the recharge rate of deep groundwater in the Bavarian Mollasse basin. J Hydrol 82:27–38

    Google Scholar 

  • Andres G, Geyh MA (1970) Paläohydrogeologische Studien mit Hilfe von 14C über den pleistozänen Grundwasserhaushalt in Mitteleuropa (Südliche Frankenalb). Naturwissenschaften 59:418

    Google Scholar 

  • Andrew A, Godwin CI, Sinclair AJ (1984) Mixing line isochrons: A new interpretation of galena lead isotope data from southeastern British Columbia. Econ Geol 79:919–932

    Google Scholar 

  • Andrews JN (1985) The isotopic composition of radiogenic helium and its use to study groundwater movement in confined aquifers. Chem Geol 49:339–351

    Google Scholar 

  • Andrews JN, Kay RLF (1982) Natural production of tritium in permeable rocks. Nature (Lond) 298:361–363

    Google Scholar 

  • Andrews JN, Lee DJ (1979) Inert gases in groundwater from the Bunter Sandstone in England as indicators of age and palaeoclimatic trends. J Hydrol 41:233–252

    Google Scholar 

  • Andrews JN, Giles IS, Kay RLF, Lee DJ, Osmond JK, Cowart JB, Fritz P, Barker JF, Gale J (1982) Radioelements, radiogenic helium and age relationships of groundwaters from the granites at Stripa, Sweden. Geochim Cosmochim Acta 46:1533–1543

    Google Scholar 

  • Andrews JN, Balderer W, Bath AH, Clausen HB, Evans GV, Florkowski T, Goldbrunner JE, Ivanovich M, Loosli H, Zojer H (1984) Environmental isotope studies in two aquifer systems: A comparison of groundwater dating methods. In: Isotope Hydrology 1983:535–576. IAEA, Vienna

    Google Scholar 

  • Andrews JN, Goldbrunner JE, Darling WG, Hooker PJ, Wilson GB, Youngman MJ, Eichinger L, Rauert W, Stichler W (1985) A radiochemical, hydrochemical and dissolved gas study of groundwaters in the Mollasse basin of Upper Austria. Earth Planet Sci Lett 73:317–392

    Google Scholar 

  • Andrews JN, Fontes JC, Michelot J-L, Elmore D (1986) In-situ neutron flux, 36C1 production and groundwater evolution in crystalline rocks at Stripa, Sweden. Earth Planet Sci Lett 77:49–58

    Google Scholar 

  • Armstrong RL, MacDowell WG (1974) Proposed refinement of the Phanerozoic time scale. Abstr. Meeting Geochron Cosmochron and Isotope Geology, August 1974, Paris

    Google Scholar 

  • Arnal GB, Audrieux P (1986) Origins of carbon in potsherds. Radiocarbon 28(2A): 711–718

    Google Scholar 

  • Arnold JR (1956) Beryllium-10 produced by cosmic rays. Science 124:584–585

    Google Scholar 

  • Atakan Y, Roether W, Munnich KO, Matthess G (1974) The Sandhausen shallow groundwater tritium experiment. In Isotope Techniques in Groundwater Hydrology 1974(I): 21–43. IAEA, Vienna

    Google Scholar 

  • Athavale RN (1984) Nuclear tracer techniques for measurement of natural recharge in hard rock terrains. In: Int Workshop on Rural Hydrogeology and Hydraulics in Fissured Basement Zone. Univ of Roorkeepp 71-80

    Google Scholar 

  • Athavale RN, Chand R, Rangarajan R (1983) Groundwater recharge estimates for two basins in the Deccan Trap basalt formation. Hydrol Sci 328:525–538

    Google Scholar 

  • Baadsgaard H (1987) Rb-Sr and K-Ca isotope systematics in minerals from potassium horizons in the Prairie Evaporite Formation, Saskatchewan, Canada. Chem Geol Isot Geosci Sect 66:1–15

    Google Scholar 

  • Baadsgaard H, Lerbekmo JF (1982) The dating of bentonite beds. In: Odin GS (ed) Numerical dating in stratigraphy, part I. Wiley, Chichester, pp 423–440

    Google Scholar 

  • Bachmann G, Grauert B (1986) Dating by means of 87Sr/86Sr-disequilibrium profiles. Terra Cognita 6:148

    Google Scholar 

  • Backus MM (1955) Mass spectrometric determination of the relative isotopic abundances of calcium and the, determination of geological age. Ph D Thesis, Department of Geology and Geophysics, Massachusetts Institute of Technology, Boston USA

    Google Scholar 

  • Bacon MP, Rosholt JN (1982) Accumulation rates of Th-230, Pa-231, and some transition metals on the Bermuda Rise. Geochim Cosmochim Acta 46:651–666

    Google Scholar 

  • Bada JL (1984) In vivo racemization in mammalian proteins. Methods Enzymol 106:98–115

    Google Scholar 

  • Bada JL (1985) Amino acid racemization dating of fossil bones. Ann Rev Earth Planet Sci 13:214–268

    Google Scholar 

  • Bada JL, Schroeder RA (1975) Amino acid racemization reactions and their geochemical implications. Naturwissenschaften 62:71–79

    Google Scholar 

  • Bada JL, Protsch R, Schroeder RA (1973) The racemization reaction of isoleucine used as a palaeotemperature indicator. Nature (Lond) 241:394–395

    Google Scholar 

  • Bada JL, Ming-Yung Shou, Man EH, Schroeder RA (1978) Decomposition of hydroxy amino acids in foraminiferal tests; kinetics, mechanism and geochronological implications. Earth Planet Sci Lett 41:67–76

    Google Scholar 

  • Bada JL, Masters PM, Hoopes E, Darling D (1979) The dating of fossil bones using amino acid racemization. In: Berger R, Suess HE (eds) Radiocarbon Dating. Univ California Press, Los Angeles, pp 740–756

    Google Scholar 

  • Bada JL, Mitchell E, Kemper B (1983) Aspartic acid racemization in narwhal teeth. Nature (Lond) 303:418–420

    Google Scholar 

  • Bada JL, Vrolijk CD, Browns S, Druffel ERM, Hedges REM (1987) Bomb radiocarbon in metabolically inert tissues from terrestrial and marine mammals. Geophys Res Lett 14:1065–1067

    Google Scholar 

  • Bagge E, Willkomm H (1966) Geologische Altersbestimmung mit 36C1. Atomkernenergie 11:176–184

    Google Scholar 

  • Bailey GN, Deith MR, Shackleton NJ (1983) Oxygen isotope analysis and seasonality determinations: limits and potential of a new technique. Am Antiq 48:390–398

    Google Scholar 

  • Baksi AK (1982) 40Ar/39Ar incremental heating studies on a suite of “disturbed” rocks from Cape Breton Island, Canada: detection of a deformational episode. Geol Soc India 23:267–276

    Google Scholar 

  • Bangert U, Hennig GJ (1979) Effects of sample preparation and the influence of clay impurities on the TL-dating of calcite cave deposits. PACT 3:281–289

    Google Scholar 

  • Banwell GM, Parizek RR (1988) Helium-4 and radon-222 concentrations in groundwater and soil gas as indicators of zones of fracture concentration in unexposed rock. J Geophys Res 93:355–366

    Google Scholar 

  • Bar M, Kolodny Y, Bentor YK (1974) Dating faults by fission track dating of epidotes—an attempt. Earth Planet Sci Lett 22:157–162

    Google Scholar 

  • Barabas M, Bach A, Mangini A (1988 a) An analytical model for the growth of ESR signals. Nucl Tracks Radiat Meas 14(1/2): 231–235

    Google Scholar 

  • Barabas M, Mangini A, Sarathein M, Stremme H (1988b) The age of the Holstein interglaciation: a reply. Q Res 29: 80–84

    Google Scholar 

  • Barker F, Millard HT Jr, Hedge CT, O’Neil JR (1976) Pikes Peak batholith: Geochemistry of some minor elements and isotopes, and implications for magma genesis. In: Epis RC, Weimer RJ (eds) Studies in Colorado field geology. Colorado School of Mines Prof Contrib 8:44–56

    Google Scholar 

  • Barker JL Jr, Anders E (1968) Accretion rate of cosmic matter from iridium and osmium contents of deep-sea sediments. Geochim Cosmochim Acta 32:627–645

    Google Scholar 

  • Barnes IL, Murphy TJ, Gramlich JW, Shields WR (1973) Lead separation by anodic deposition and isotope ratio mass spectrometry of microgram and smaller samples. Anal Chem 45:1881–1884

    Google Scholar 

  • Barnes JW, Lang EJ, Portratz KA (1956) Ratio of ionium to uranium in coral limestone. Science 124:175–176

    Google Scholar 

  • Baraola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature (Lond) 329:408–414

    Google Scholar 

  • Barnov VA, Kartvelishvili II, Laliev AG, Tsetskhladze TV (1983) Determination of natural tritium in formation waters of the Samgari-Patardzeuli Oil field. Water Res 9:546–549

    Google Scholar 

  • Barr GE, Lambert SJ, Carter JA (1979) Uranium isotope disequilibrium in ground waters of south eastern New Mexico and implications regarding age-dating of waters. In: Isotope Hydrology 1978(II): 645–660. IAEA, Vienna

    Google Scholar 

  • Barsukov VL (1981) Comparative planetology and the earth’s early history. Geokhimiya 11:1603–1614

    Google Scholar 

  • Barton CE, Merrill RT, Barbetti M (1979) Intensity of the earth’s magnetic field over the last 10 000 years. Phys Earth Planet Inter 20:96–110

    Google Scholar 

  • Barton JC, Watson AH, Wright AG (1982) A direct measurement of the distribution in depth of 26A1 in the Estacado meteorite. Geochim Cosmochim Acta 46:1963–1967

    Google Scholar 

  • Basu AR, Tatsumoto M (1980) Nd-isotopes in selected mantle-derived rocks and minerals and their implications for mantle evolution. Contrib Mineral Petrol 75:43–54

    Google Scholar 

  • Bath AH, Edmunds WM, Andrews JN (1979) Palaeoclimatic trends deduced from the hydrochemistry of a Triassic sandstone aquifer, United Kingdom. In: Isotope Hydrology 1978(II): 545–566. IAEA, Vienna

    Google Scholar 

  • Bauer CA (1947) Production of helium in meteorites by cosmic radiation. Phys Rev 72:354–355

    Google Scholar 

  • Bauer CA (1948) Rate of production of helium in meteorites by cosmic radiation. Phys Rev 74:501–502

    Google Scholar 

  • Baxter MS, Harkness DD (1975) 14C/12C ratios of urban pollution. In: Isotope Ratios as Pollutant Source and Behaviour Indicators: 135–140. IAEA, Vienna

    Google Scholar 

  • Becker K, Goedicke C (1978) A quick method for authentication of ceramic art objects. Nucl Instrum Methods 151:313–316

    Google Scholar 

  • Beer H, Walter G, Macklin RL. Patchett PJ (1984) Neutron capture cross sections and solar abundances of 160,161Dy, 170,171Yb, 175,176Lu, and 176,177Hf for the s-process analysis of the radionuclide 176Lu. Phys Rev 30:464–478

    Google Scholar 

  • Beer J, Giertz V, Möll M, Oeschger H, Riessen T, Strahm C (1979) The contribution of the Swiss lake-dwellings to the calibration of radiocarbon dates. In: Berger R, Suess HE (eds) Radiocarbon Dating. Univ California Press, Los Angeles, pp 566–584

    Google Scholar 

  • Beer J, Andree M, Oeschger H, Siegenthaler U, Bonani G, Hofmann H, Morezoni E, Nessi M, Suter M, Wölfli W, Finkel R, Langway C Jr (1984) The Camp Century 10Be record: implications for long-term variations of the geomagnetic dipole moment. Nucl Instrum Methods Phys Res 233(B5): 380–384

    Google Scholar 

  • Beer J, Bonani G, Hofmann HJ, Suter M, Synal A, Wölfli W, Oeschger H, Siegenthaler U, Finkel RC (1987) 10Be measurements on polar ice: comparison of arctic and antarctic records. Nucl Instrum Methods Phys Res B 29:203–206

    Google Scholar 

  • Beer J, Siegenthaler U, Blinov A (1988a) Temporal 10Be variations in ice: information on solar activity and geomagnetic field intensity. In: Stephenson FR, Wolfendale AW (eds) Secular Solar and Geomagnetic Variations in the Last 10,000 Years. Kluwer Academic Publ. Dordrecht, pp 297–313

    Google Scholar 

  • Beer J, Siegenthaler U, Bonani G, Finkel RC, Oeschger H, Suter M, Wölfli W (1988b) Information on past solar activity and geomagnetism from 10Be in the Camp Century ice core. Nature (Lond) 331: 675–679

    Google Scholar 

  • Begemann F, Geiss J, Hess DC (1957) Radiation age of a meteorite from cosmic-ray produced He3 and H3. Phys Rev 107:540–542

    Google Scholar 

  • Behrens H (1982) New insights into the chemical behavior of radioiodine in aquatic environments. In: Environmental Migration of Long Lived Radionuclides: 27–40. IAEA, Vienna

    Google Scholar 

  • Behrens H, Moser H, Oertner H, Rauert W, Stichler W, Ambach W, Kirchlechner W (1979) Models for the runoff from a glaciated catchment area using measurements of environmental isotope content. In: Isotope Hydrology 1978: (II) 829–845. IAEA, Vienna

    Google Scholar 

  • Bell K, Powell JL (1970) Strontium isotopic studies of alkalic rocks: The alkalic complexes of Eastern Uganda. Geol Soc Am Bull 81:3481–3490

    Google Scholar 

  • Bell K, Blenkinsop J, Cole TJS, Menagh DP (1982) Evidence from Sr isotopes for long-lived heterogeneities in the upper mantle. Nature (Lond) 298:251–253

    Google Scholar 

  • Bell WT (1979) Thermoluminescence dating: revised dose-rate data. Archaeometry 21:243–245

    Google Scholar 

  • Bender ML (1973) Helium-uranium dating of corals. Geochim Cosmochim Acta 37:1229–1247

    Google Scholar 

  • Bender ML, Fairbanks RG, Taylor FW, Matthews RK, Goddard JG, Broecker WS (1979) Uranium-series dating of the Pleistocene reef tracts of Barbados, West Indies. Geol Soc Am Bull Part I 90:577–594

    Google Scholar 

  • Bennett CL, Beukens RP, Clover MR, Gove HE, Liebert RP, Litherland AE, Purser KH, Sondheim WE (1977) Radiocarbon dating using electrostatic accelerators: negative ions provide the key. Science 198:508–510

    Google Scholar 

  • Bentley HW, Phillips FM, Davis SN, Gifford S, Elmore D, Tubbs LE, Gove HE (1982) Thermonuclear 36Cl pulse in natural water. Nature (Lond) 300:737–740

    Google Scholar 

  • Bentley HW, Phillips FM, Davis SN (1986a) Chlorine-36 in the terrestrial environment. In: Fritz P, Fontes JCh (eds) Handbook of Environmental Isotope Geochemistry, Vol 2. The Terrestrial Environment. Elsevier, Amsterdam, pp 427–480

    Google Scholar 

  • Bentley HW, Phillips FM, Davis SN, Habermehl MA, Airey PL, Calf GE, Elmore D, Gove HE, Torgersen TL (1986 b) Chlorine-36 dating of very old groundwater 1. The Great Artesian Basin, Australia. Water Resour Res 22(13): 1991–2001

    Google Scholar 

  • Berger A (1988) Milankovitch theory and climate. Rev Geophys 26:624–657

    Google Scholar 

  • Berger A, Imbrie J, Kukla G, Saltzman B (eds) (1984) Milankovitch and Climate, I and II. Reidel, Dordrecht, p 510 and p 385

    Google Scholar 

  • Berger GW (1985a) Thermoluminscence dating of volcanic ash. J Volcanol Geotherm 25: 333–347

    Google Scholar 

  • Berger GW (1985b) Thermolummscence dating applied to a thin winter varve of the late glacial South Thompson silt, south-central British Colombia. Can J Earth Sci 22: 1736–1739

    Google Scholar 

  • Berger GW (1986) Dating Quaternary deposits by luminscence — recent advances. Geosci Canada 13:15–21

    Google Scholar 

  • Berger GW, York D (1981) Geothermometry from 40Ar/39Ar dating experiments. Geochim Cosmochim Acta 45:795–812

    Google Scholar 

  • Berger GW, Huntley DJ, Stipp JJ (1984) Thermoluminescenee studies on a 14C-dated marine core. Can J Earth Sci 21:1145–1150

    Google Scholar 

  • Berger GW, Clague JJ, Huntley DJ (1987) Thermoluminescenee dating applied to glaciolacustrial sediments from central British Columbia. Can J Earth Sci 24:425–434

    Google Scholar 

  • Berger R, Suess HE (eds) (1979) Radiocarbon Dating. Univ California Press, Los Angeles, 789 pp

    Google Scholar 

  • Berger WH (1981) Oxygen and carbon isotopes in foraminifera: an introduction. Palaeogeogr Palaeoclimat Palaeoecol 33:3–7

    Google Scholar 

  • Berger WH, Johnson RF (1978) On the thickness and the 14C age of the mixed layer in deep-sea carbonates. Earth Planet Sci Lett 41:223–227

    Google Scholar 

  • Berger WH, Johnson RF, Killingley JS (1977) “Unmixing” of the deep-sea record and the deglacial meltwater spike. Nature (Lond) 269:661–663

    Google Scholar 

  • Bernat M, Allègre CJ (1974) Systematics in uranium-thorium dating of sediments. Earth Planet Sci Lett 21:310–314

    Google Scholar 

  • Bertel E, Märk TD (1983) Fission tracks in minerals: annealing kinetics, track structure and age correction. Phys Chem Mineral 9:197–204

    Google Scholar 

  • Bhandari N, Lal D, Rajan RS, Arnold JR, Marti K, Moorce CB (1980) Atmospheric ablation in meteorites: a study based on cosmic ray tracks and neon isotopes. Nucl Tracks 4:213–262

    Google Scholar 

  • Bhandari N, Gupta DS, Singhvi AK, Nijampurkar VN, Vohra CP (1983) Thermoluminescence dating of glaciers. PACT 9:513–521

    Google Scholar 

  • Bibron R, Chesselet R, Crozaz G, Leger G, Mennessier JP, Picciotto E (1974) Extra-terrestrial 53Mn in Antarctic ice. Earth Planet Sci Lett 21:109–116

    Google Scholar 

  • Bickford ME, Harrower KL, Hoppe WJ, Nelson BK, Nusbaum RL, Thomas JJ (1981) Rb-Sr and U-Pb geochronology and distribution of rock types in the Precambrian basement of Missouri and Kansas. Geol Soc Am Bull 92:323–341

    Google Scholar 

  • Bien GS, Rakestraw NW, Suess HE (1960) Radiocarbon concentration in Pacific ocean water. Tellus 12:436–443

    Google Scholar 

  • Birck JL, Minister JF, Allègre C (1975) 87Rb-87Sr chronology of achondrites. Meteoritics 10:364–365

    Google Scholar 

  • Bird JR, Duerden B, Wilson DJ (1983) Ion Beam Techniques in Archaeology and the Arts. Nucl Sci Appl Sec B: 483–513. Harwood Academic, New York

    Google Scholar 

  • Bischoff JL, Rosenbauer RJ (1981) Uranium series dating of human skeletal remains from the Del Mar and Sunnyvale Sites, California. Science 213:1003–1005

    Google Scholar 

  • Bischoff JL, Rosenbauer RJ, Tavoso A, de Lumley H (1988) A test of uranium-series dating of fossil tooth enamel: results from Tournai cave, France. Appl Geochem 3:145–151

    Google Scholar 

  • Black LP, Fitzgerald JD, Harley SL (1984) Pb isotopic composition, colour, and microstructure of monazites from a polymetamorphic rock in Antarctica. Contrib Mineral Petrol 85:141–148

    Google Scholar 

  • Black LP, Williams IS, Compston W (1986) Four zircon ages from one rock: the history of a 3930-Ma-old granulite from Mount Sones, Enderby Land, Antarctica. Contrib Mineral Petrol 94:427–437

    Google Scholar 

  • Blake JB, Schramm DN (1973) 247Cm as a short-lived r-process chronometer. Nat Phys Sci 243:138–140

    Google Scholar 

  • Blümel WD (1982) Calcretes in Namibia and SE-Spain relations to substratum, soil formation and geomorphic factors. CATENA Suppl 1:67–82

    Google Scholar 

  • Bluszcz A (1988) The Monte-Carlo experiment with the least squares methods of line fitting. Nucl Tracks Radiat Meas 14:355–360

    Google Scholar 

  • Better-Jensen L, Mejdahl V (1988) Assessment of beta dose rate using a GM multicounter system. Nucl Tracks Radiat Meas 14:187–191

    Google Scholar 

  • Bogard DD, Husain L, Nyquist LE (1979) 40Ar-39Ar age of the Shergotty achondrite and implications for its post-shock thermal history. Geochim Cosmochim Acta 43:1047–1055

    Google Scholar 

  • Bogard DD, Nyquist LE, Johnson P (1984) Noble gas content of shergottites and implications for the Martian origin of SNC meteorites. Geochim Cosmochim Acta 48:1723–1739

    Google Scholar 

  • Boltwood BB (1907) On the ultimate disintegration products of the radioactive elements. Part II. The disintegration products of uranium. Am J Sci 23(4): 77–78

    Google Scholar 

  • Bonani G, Balzer R, Hofmann H-J, Morenzoni E, Nessi M, Suter M, Wölfli W (1984) Properties of milligram size samples prepared for AMS 14C dating at ETH. Nucl Instrum Methods 233(B5): 284–288

    Google Scholar 

  • Bonhomme MG (1982) The use of Rb-Sr and K-Ar dating methods as a stratigraphie tool applied to sedimentary rocks and minerals. Precambrian Res 18:5–25

    Google Scholar 

  • Bonhomme MG, Lucas J, Millot G (1966) Signification des determinations isotopiques dans la géochronologie des sediments. Actes du 151e Coll Int CNRS, Nancy 1965:541–565

    Google Scholar 

  • Bonhomme MG, Bühmann D, Besnus Y (1983) Reliability of K-Ar dating of clays and silicifications associated with vein mineralizations in Western Europe. Geol Rundsch 72:105–117

    Google Scholar 

  • Bonner FT, Roth E, Schaeffer OA, Thompson SO (1961) Chlorine-36 and deuterium study of Great Basin lake waters. Geochim Cosmochin Acta 25:261–266

    Google Scholar 

  • Boschmann W (1986) Uran und Helium in Erzmineralien und die Frage ihrer Datierbarkeit. Heidelberger Geowissenschaftl Abh 4:234 pp

    Google Scholar 

  • Boudin A, Deutsch S (1970) Geochronology: recent development in the lutetium-176/hafnium-176 dating method. Science 168:1219–1220

    Google Scholar 

  • Bourles D, Raisbeck GM, Yiou F, Loiseaux JM, Lienoin M, Klein J, Middleton R (1984) Investigation of possible association of 10Be and 26Al with biogenic matter in the marine environment. Nucl Intrum Methods 233(B5): 365–370

    Google Scholar 

  • Bourles D, Raisbeck GM, Yiou F (1989) 10Be and 9Be in marine sediments and their potential for dating. Geochim Cosmochim Acta 53:443–452

    Google Scholar 

  • Boyle EA (1984) Sampling statistic limitations on benthic foraminifera chemical and isotopic data. Mar Geol 58:213–224

    Google Scholar 

  • Brenninkmeijer CAM, van Geel B, Mook WG (1982) Variations in the D/H and 18O/16O ratios in cellulose extracted from a peat bog core. Earth Planet Sci Lett 61:283–290

    Google Scholar 

  • Brereton NR (1970) Corrections for interfering isotopes in the 40Ar/39Ar dating method. Earth Planet Sci Lett 8:427–433

    Google Scholar 

  • Brévart O, Dupré B, Allègre CJ (1982) Metallogenesis at spreading centres: lead isotope systematics for sulfides, manganese-rich crusts, basalts, and sediments from the Cyamex and Alvin areas (East Pacific Rise). Econ Geol 77:564–575

    Google Scholar 

  • Brévart O, Dupré B, Allègre CJ (1986) Lead-lead age of komatiitic lavas and limitations on the structure and evolution of the Precambrian mantle. Earth Planet Sci Lett 77:293–302

    Google Scholar 

  • Brewer MS, Lippolt HJ (1974) Petrogenesis of basement rocks of the Upper Rhine Region elucidated by rubidium-strontium systematics. Contrib Mineral Petrol 45:123–141

    Google Scholar 

  • Brewster D (1863) On the structure and optical phenomena of ancient decomposed glass. Trans R Soc Edinbourgh 23:193–204

    Google Scholar 

  • Brigham JK (1983) Intrashell variations in amino acid concentrations and isoleucine epimerization ratios in fossil ‘Hiatella arctica’. Geology 11:509–513

    Google Scholar 

  • Brill RH (1969) The scientific investigation of ancient glass. 8th Int Congr Glass, pp 47-68

    Google Scholar 

  • Brill RH, Hood HP (1961) A new method for dating ancient glass. Nature (Lond) 189:12–14

    Google Scholar 

  • Broecker WS (1981) Glacial to interglacial changes in ocean and atmospheric chemistry. In: Berger A (ed) Climate Variations and Variability: Facts and Theory. Reidel, Holland, pp 111–121

    Google Scholar 

  • Broecker WS (1982) Ocean chemistry during glacial time. Geochim Cosmochim Acta 46:1689–1705

    Google Scholar 

  • Broecker WS (1987) Paleo-ocean circulation rates as determined from accelerator radiocarbon-measurements on hand-picked foraminifera. Terra Cognita 7(l): 43–44

    Google Scholar 

  • Broecker WS, Ku TL (1969) Caribbean Cores P6304-8 and P6304-9: New analysis of absolute chronology. Science 166:404–406

    Google Scholar 

  • Broecker WS, Peng TW (1982) Tracers in the sea. Eldigio, Columbia Univ New York

    Google Scholar 

  • Broecker WS, Thurber DL (1965) Uranium-series dating of corals and oolites from Bahaman and Florida key limestones. Science 149:58–60

    Google Scholar 

  • Broecker W, Mix A, Andree M, Oeschger H (1984) Radiocarbon measurements on coexisting benthic and planktonic foraminifera shells: potential for reconstructing ocean ventilation times over the past 20000 years. Nucl Instrum Methods Phys Res 233(B5): 331–339

    Google Scholar 

  • Bronk CR, Hedges REM (1987) A gas ion source for radiocarbon dating. Nucl Instrum Methods Phys Res B 29:45–49

    Google Scholar 

  • Brookins DG, Krueger HW, Bills TM (1985) Rb-Sr and K-Ar analyses of evaporate minerals from southeastern New Mexico. Isochron/West 43:11–12

    Google Scholar 

  • Brooks C, Wendt I, Harre W (1968) A two-error regression treatment and its application to Rb-Sr and initial Sr87/Sr86 ratios of younger Variscan granitic rocks from the Schwarzwald Massif, southwest Germany. J Geophys Res 73:6071–6084

    Google Scholar 

  • Brown H (1947) An experimental method for the estimation of the age of the earth. Phys Rev 72:348

    Google Scholar 

  • Brown L (1987) 10Be as a tracer of erosion and sediment transport. Chem Geol Isot Geosci Sect 65:189–196

    Google Scholar 

  • Brown L, Klein J, Middleton R, Sacks IS, Tera F (1982) 10Be in island-arc vulcanoes and implications for subduction. Nature (Lond) 299:718–720

    Google Scholar 

  • Brown RB, Kling GF, Cutshall NH (1981) Agricultural erosion indicated by 137Cs redistribution: II. Estimates of erosion rates. Soil Sci Soc Am J 45:1191–1197

    Google Scholar 

  • Brown RM, Andrews HR, Ball GC, Burn N, Imahori Y, Milton JCD, Fireman EL (1984) 14C content of ten meteorites measured by tandem accelerator mass spectrometry. Earth Plan Sci Lett 67:1–8

    Google Scholar 

  • Brown TA, Nelson DE, Southon JR, Vogel JS (1985) The extraction of 10Be from lake sediments leaching versus total dissolution. Chem Geol Isot Geosci Sect 52:375–378

    Google Scholar 

  • Brunnacker K, Jäger K-D, Hennig GJ, Preuss J, Grün R (1983) Radiometrische Untersuchungen zur Datierung mitteleuropäischer Travertinvorkommen. EAZ Ethnogr-Archäol Z 24:217–266

    Google Scholar 

  • Bruns M, Münnich KO, Becker B (1980 a) Natural radiocarbon variations from AD 200 to 800. Radiocarbon 22(II): 273–277

    Google Scholar 

  • Bruns M, Levin I, Münnich KO, Hubberten HW, Fillipakis S (1980 b) Regional sources of vulcanic carbon dioxide and their influence on 14C content of present-day plant material. Radiocarbon 22(II): 532–536

    Google Scholar 

  • Bucha V (1973) Archaeomagnetic dating. In: Michael HN, Ralph EK (eds) Dating Techniques for the Archaeologist. MIT, Cambridge, MA, London, pp 57–117

    Google Scholar 

  • Buchardt B, Fritz B (1980) Environmental isotopes as environmental and climatological indicators. In: Fritz P, Fontes JC (eds) Handbook of Environmental Isotope Geochemistry, vol 1, The Terrestrial Environment A. Elsevier, Amsterdam, p 473–504

    Google Scholar 

  • Buczko CM, Borbely A, Ilkov NI (1978) Fossil bones and the paleoclimatology. Radiochem Radioanal Lett 36:175–179

    Google Scholar 

  • Burchart J, Kral J (1982) Application of fission-track isochrons method to accessory minerals of the crystalline rocks of the West Carpathians. Geol Carpathica 33:141–146

    Google Scholar 

  • Burk RL, Stuiver M (1981) Oxygen isotope ratios in trees reflect mean annual temperature and humidity. Science 211:1417–1419

    Google Scholar 

  • Burke WH, Denison RE, Hetherington EA, Koepnick RB, Nelson HF, Otto JB (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10:516–519

    Google Scholar 

  • Burnett WC, Kim KH (1986) Comparison of radiocarbon and uranium-series dating methods as applied to marine apatite. Q Res 25:369–379

    Google Scholar 

  • Burnett WC, Beers MJ, Roe KK (1982) Growth rates of phosphate nodules from the continental margin off Peru. Science 215:1616–1617

    Google Scholar 

  • Burwash RA, Krupicka J, Basu AR, Wagner PA (1985) Resetting of Nd and Sr whole-rock isochrons from polymetamorphic granulites, northeastern Alberta. Canad J Earth Sci 22:992–1000

    Google Scholar 

  • Butler WA, Jeffery PM, Reynolds JH, Wasserburg GJ (1963) Isotopic variations in terrestrial xenon. J Geophys Res 68:3283–3291

    Google Scholar 

  • Butzer KW (1983) Global sea level stratigraphy: an appraisal. Q Sci Rev 2:1–15

    Google Scholar 

  • Cadogan PH (1977) Palaeoatmospheric argon in Rhynie chert. Nature (Lond) 268:38–40

    Google Scholar 

  • Cairns T (1976) Archaeological dating. Anal Chem 48:266A–280A

    Google Scholar 

  • Calk LC, Naeser CW (1973) The thermal effect of a basalt intrusion on fission tracks in quartz monzonite. J Geol 81:189–198

    Google Scholar 

  • Cameron AE, Smith DH, Walker RL (1969) Mass spectrometry of nanogram-size samples of lead. Anal Chem 41:525–526

    Google Scholar 

  • Campbell DA, Paul EA, Rennie OA, McCallum KJ (1967) Factors affecting the accuracy of the carbon dating method in soil humus studies. Soil Sci 104:81–85

    Google Scholar 

  • Canalas RA, Alexander EC, Manuel OK (1968) Terrestrial abundance of noble gases. J Geophys Res 73:3331–3334

    Google Scholar 

  • Capaldi G, Pece R (1981) On the reliability of the 23OTh-238U dating method applied to young volcanic rocks. J Volcan Geotherm Res 11:367–372

    Google Scholar 

  • Capaldi G, Cortini M, Pece R (1983) U and Th decay-series disequilibria in historical lavas from the Eolian Islands, Thyrrhenian Sea. Isot Geosci 1:39–55

    Google Scholar 

  • Capaldi G, Cortini M, Pece R (1985) On the reliability of the 23OTh-238U dating method applied to young volcanic rocks-reply. J Volcanol Geotherm Res 26:369–376

    Google Scholar 

  • Carl C, Dill H (1985) Age of secondary uranium mineralizations in the basement rocks of northeastern Bavaria, F.R.G. Chem Geol Isot Geosci Sect 52:295–316

    Google Scholar 

  • Carlson RW, Lugmair GW, Macdougall JD (1981) Columbia River volcanism: the question of mantle heterogeneity or crustal contamination. Geochim Cosmochim Acta 45:2483–2499

    Google Scholar 

  • Carver EA, Anders E (1976) Fission-track ages of four meteorites. Geochim Cosmochim Acta 40:467–477

    Google Scholar 

  • Cassignol C, Gillot PY (1982) Range and effectiveness of unspiked potassium-argon dating: experimental groundwork and applications. In: Odin GS (ed) Numerical dating in stratigraphy, Part I. Wiley, New York, pp 159–173

    Google Scholar 

  • Castagnoli G, Lal D (1980) Solar modulation effects in terrestrial production of carbon-14. Radiocarbon 22(II): 133–158

    Google Scholar 

  • Catanzaro EJ (1967) Triple-filament method for solid-sample lead isotope analysis. J Geophys Res 72:1325–1327

    Google Scholar 

  • Catanzaro EJ (1968) The interpretation of zircon ages. In: Hamilton EI, Farquhar RM (eds) Radiometric dating for geologists. Wiley, New York, pp 225–258

    Google Scholar 

  • Catanzaro EJ, Murphy TJ, Garner EL, Shields WR (1969) Absolute isotopic abundance ratio and atomic weight of terrestrial rubidium. J Res US Nat Bur Stand Sect A 73:511–516

    Google Scholar 

  • Catchen GL (1984) Application of the equations of radioactive growth and decay to geochronological models and explicit solution of the equations by Laplace transformation. Isot Geosci 2:181–195

    Google Scholar 

  • Cattell A, Krogh TE, Arndt NT (1984) Conflicting Sm-Nd whole-rock and U-Pb zircon ages for Archaean lavas from Newton Township Abitibi Belt, Ontario. Earth Planet Sci Lett 70:280–290

    Google Scholar 

  • Cavazzini G (1988) Linear correlation between pairs of Rb-Sr isochron ages from coexisting metamorphic micas. Chem Geol Isot Geosci Sect 72:29–36

    Google Scholar 

  • Ceding TE, Brown FH, Bowman JR (1985) Low-temperature alteration of volcanic glass: hydration, Na, K, 18O and Ar mobility. Chem Geol Isot Geosci Sect 52:281–293

    Google Scholar 

  • Cerveny PF, Naeser ND, Zeitler PK, Naeser CW, Johnson NM (1988) History of Uplift and Relief of the Himalaya During the Past 18 Million Years: Evidence from Fission-Track Ages of Detrital Zircons from Sandstones of the Siwalik Group. In: Kleinspehn KL, Paola C. Frontiers in Sedimentary Geology. New Perspectives in Basin Analysis: 43–61; New York, Berlin, Heidelberg (Springer)

    Google Scholar 

  • Chalov PI (1983) Uranium disequilibrium as an indicator of process in the hydrosphere. Water Res 9:466–479

    Google Scholar 

  • Chalov PI, Tuzova TV, Musin YA (1964) The U234/U238 ratio in natural waters and its use in nuclear geochronology. Geochim Inter 1:402–408

    Google Scholar 

  • Chanton JP, Martens CS, Kipphut GW, (1983) Lead-210 sediment geochronology in a changing coastal environment. Geochim Cosmochim Acta 47:1791–1804

    Google Scholar 

  • Chapelle FH, Morris JT, McMahon PB, Zelibor Jr JL (1988) Bacterial metabolism and the δ13C composition of groundwater, Floridan aquifer system, South Carolina. Geology 16:117–121

    Google Scholar 

  • Chappell J, Polach HA (1972) Some effects of partial recrystallization on 14C dating Late Pleistocene corals and molluscs. Q Res 2:244–252

    Google Scholar 

  • Charlet J-M, Quinif Y, Dupuis Ch, Lair P (1986) A case study of thermoluminescence in uranium exploration. Uranium 2:279–285.

    Google Scholar 

  • Chase CG (1981) Oceanic island Pb: Two-stage histories and mantle evolution. Earth Planet Sci Lett 52:277–284

    Google Scholar 

  • Chaudhuri S, Clauer N (1986) Fluctuations of isotopic composition of strontium in seawater during the Phanerozoic Eon. Chem Geol Isot Geosci Sect 59:293–303

    Google Scholar 

  • Chauvel C, Dupré B, Jenner GA (1985) The Sm-Nd age of Kambalda volcanics is 500 Ma too old! Earth Planet Sci Lett 74:315–324

    Google Scholar 

  • Chen CH, Kramer SD, Allman SL, Hurst GS (1984) Selective counting of krypton atoms using resonance ionization spectroscopy. Appl Phys Lett 44:640–642

    Google Scholar 

  • Chen JH, Tilton GR (1976) Isotopic lead investigations on the Allende carbonaceous chondrite. Geochim Cosmochim Acta 40:635–643

    Google Scholar 

  • Chen JH, Wasserburg GJ (1979) Cm/U, Th/U, and 235U/238U in meteorites. Meteoritics 16:301

    Google Scholar 

  • Cherdyntsev VV (1955) 3rd session of the commission of the determination of absolute ages of geologic formation. Izd Acad Nauk SSSR: 175 (in Russian)

    Google Scholar 

  • Cherdyntsev VV (1969) Uranium. Atomizdat, Moscow, 234 pp

    Google Scholar 

  • Cherdyntsev VV, Kuptsov VM, Kuz’mina YA, Zverev VL (1968) Radioisotopes and protactinium age of neovolcanic rocks of the Caucasus. Geokhimiya 1:77–85

    Google Scholar 

  • Chizhov AB, Chizhova NI, Morkovkina IK, Romanov VV (1983) Tritium in permafrost and in ground ice. Proc Int Conf Permafrost 4:147–151

    Google Scholar 

  • Chopin C, Maluski H (1982) Unconvincing evidence against the blocking temperature concept? Contrib Mineral Petrol 80:391–394

    Google Scholar 

  • Christmann D, Sonntag C (1987) Groundwater evaporation from east-Saharian depressions by means of deuterium and oxygen-18 in soil moisture. In: Isotope Techniques in Water Resources Development: 189–204. IAEA, Vienna

    Google Scholar 

  • Church SE, Tatsumoto M (1975) Lead isotope relations in oceanic ridge basalts from the Juan de Fuca-Gorda ridge area, N.E. Pacific Ocean. Contrib Mineral Petrol 53:253–279

    Google Scholar 

  • Clark PA, Templer RH (1988) Dating thermoluminescence samples which exhibit anomalous fading. Archaeometry 40:19-36 (s.a. Nucl Tracks Radiat Meas 14:139–141)

    Google Scholar 

  • Clarke WB, Kugler CW (1973) Dissolved helium in groundwater: a possible method for uranium and thorium prospecting. Econ Geol 68:243–251

    Google Scholar 

  • Clarke WB, Jenkins WJ, Top Z (1976) Determination of tritium by mass spectrometric measurement of 3He. Int J Appl Rad Isot 27:515–517

    Google Scholar 

  • Clauer N (1976) Geochimie Isotopique du strontium des milieux sedimentaire. Application à 1a géochronologie de la couverture du craton ouest-africain. Mem Sci Geol Strasbourg 45:256

    Google Scholar 

  • Clauer N (1979) A new approach to Rb-Sr dating of sedimentary rocks. In: Jäger E, Hunziker JC (eds) Lectures in isotope geology. Springer, Berlin Heidelberg New York, pp 30-51

    Google Scholar 

  • Clauer N (1982) The rubidium-strontium method applied to sediments: certitudes and uncertainties. In: Odin GS (ed) Numerical dating in stratigraphy, part I. Wiley, Chichester, pp 245–276

    Google Scholar 

  • Clausen HB (1973) Dating of polar ice by 32Si. J Glaciol 12:411–416

    Google Scholar 

  • Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol 28:199–206

    Google Scholar 

  • Cliff RA, Gray CM, Huhma H (1983) A Sm-Nd isotopic study of the South Harris Igneous Complex, the Outer Hebrides. Contrib Mineral Petrol 82:91–98

    Google Scholar 

  • Coale KH, Bruland KW (1985) 234U:238U disequilibrium within the California current. Limnol Oceanogr 30:22–23

    Google Scholar 

  • Cohee GV, Glaessner MF, Hedberg HD (eds) (1978) Contributions to the geologic time scale. Stud Geol Am Assoc Petrol Geol 6:388

    Google Scholar 

  • Coleman ML (1971) Potassium-calcium dates from pegmatitic micas. Earth Planet Sci Lett 12:399–405

    Google Scholar 

  • Collins CB, Russel RD, Farquhar RM (1953) The maximum age of the elements and the age of the earth’s crust. Can J Phys 31:402

    Google Scholar 

  • Collinson DW (1983) Methods in Rock Magmatism and Palaeomagnestism. Techniques and Instrumentation. Chapman and Hall, London, 503 pp

    Google Scholar 

  • Comer JB, Naeser CW, McDowell FW (1980) Fission-track ages of zircon from Jamaican bauxite and terra rossa. Econ Geol 75:117–121

    Google Scholar 

  • Compston W, Jeffery PM (1959) Anomalous common strontium in granite. Nature (Lond) 184:1792–1793

    Google Scholar 

  • Compston W, Kröner A (1988) Multiple zircon growth within early Archaean tonalitic gneiss from the Ancient Gneiss Complex, Swaziland. Earth Planet Sci Lett 87:13–28

    Google Scholar 

  • Compston W, McDougall I, Wyborn D (1982) Possible two-stage 87Sr evolution in the Stockdale Rhyolite. Earth Planet Sci Lett 61:297–302

    Google Scholar 

  • Compston W, Williams IS, Black LP (1983) Use of the ion microprobe in geological dating. BMR 82, Yearb Bureau Mineral Resour, Geol Geophys, Canberra

    Google Scholar 

  • Compston W, Williams IS, Campbell IH, Gresham JJ (1985/86) Zircon xenocrysts from the Kambalda volcanics: age constraints and direct evidence for older continental crust below the Kambalda-Norseman greenstones. Earth Planet Sci Lett 76:299–311

    Google Scholar 

  • Condomines M, Tanguy JC, Kieffer G, Allègre CJ (1982) Magmatic evolution of a volcano studied by 230Th-238U disequilibrium and trace elements systematics: the Etna case. Geochim Cosmochim Acta 46:1397–1416

    Google Scholar 

  • Condomines M, Hemond Ch, Allègre CJ (1988) U-Th-Ra radioactive disequilibria and magmatic processes. Earth Planet Sci Lett 90:243–262

    Google Scholar 

  • Constable CC, McElhinny MW (1985) Holocene geomagnetic secular variation records from north-eastern Australian lake sediments. Geophys J 81:103–120

    Google Scholar 

  • Cook J, Stringer CB, Currant AP, Schwarcz HP, Wintle AG (1982) A review of the chronology of the European middle Pleistocene hominid record. Yearb Phys Anthropol 25:19–65

    Google Scholar 

  • Cordani UG, Kawashita K, Filho AT (1978) Applicability of the rubidium-strontium method to shales and related rocks. In: Cohee GV, Glaessner MF, Hedberg HD (eds) Contributions to the Geologic Times Scale. Am Assoc Petrol Geol, Stud Geol 6:93–117

    Google Scholar 

  • Cortini M (1985) An attempt to model the timing of magma formation by means of radioactive disequilibria. Chem Geol 58:33–43

    Google Scholar 

  • Court DJ, Goldsack RJ, Ferrari LM, Polach HA (1981) The use of carbon isotopes in identifying urban air particulate sources. Clean Air 1:6–11

    Google Scholar 

  • Covich A, Stuiver M (1974) Changes in oxygen 18 as a measure of long-term fluctuations in tropical lake levels and molluscan populations. Limnol Oceanogr 19:682–691

    Google Scholar 

  • Cowan GA, Haxton WC (1982) Solar neutrino production of technetium-97 and technetium-98. Science 216:51–54

    Google Scholar 

  • Cox A (1969) Geomagnetic reversals. Science 163:237–245

    Google Scholar 

  • Cox A (1975) The frequency of geomagnetic reversals and the symmetry of the nondipole field. Phil Trans R Soc Lond Ser A 243:67–92

    Google Scholar 

  • Craig H (1957) Isotopic standards of carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149

    Google Scholar 

  • Craig H (1961a) Isotopic variations in meteoric water. Science 133: 1702–1703

    Google Scholar 

  • Craig H (1961b) Standard of reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133: 1833–1834

    Google Scholar 

  • Craig H, Lupton JE, Horibe Y (1978) A mantle helium component in circum-Pacific volcanic gases: Hakone, the Marianas and Mt. Lassen. Adv Earth Planet Sci 3:3–16

    Google Scholar 

  • Craig LE, Smith AG, Armstrong RL (1986) A geological time scale. Terra Cognita 6:141

    Google Scholar 

  • Crane HR (1951) Dating of relics by radiocarbon analysis. Nucleonics 9:16–23

    Google Scholar 

  • Crawford RW, Trole J, Baxter MS, Thomson J (1985) A comparison of the particle track and alpha-spectrometric techniques in excess thorium-230 dating of eastern Atlantic pelagic sediments. J Environ Radioact 2:135–144

    Google Scholar 

  • Creer KM (1981) Long-period geomagnetic secular variations since 12,000 yr BP. Nature (Lond) 292:208–212

    Google Scholar 

  • Creer KM (1983) Computer synthesis of geomagnetic palaeosecular variations. Nature (Lond) 304:695–699

    Google Scholar 

  • Creer KM, Kopper JS (1974) Paleomagnetic dating of cave paintings in Tito Bustillo cave, Asturias, Spain. Science 186:348–350

    Google Scholar 

  • Creer KM, Tucholka P (1982a) Construction of type curves of geomagnetic secular variation for dating lake sediments from east central North America. Can J Earth Sci 19: 1106–1115

    Google Scholar 

  • Creer KM, Tucholka P (1982b) Secular variation as recorded in lake sediments: a discussion of North America and European results. Phil Trans R Soc Lond A 306: 87–102

    Google Scholar 

  • Creer KM, Tucholka P (1983) On the current state of lake sediment paleomagnetic research. Geophys J 74:223–238

    Google Scholar 

  • Creer KM, Valencio DA, Simitro AM, Tucholka P, Vilas JFA (1983) Geomagnetic secular variations 0-14,000 yr BP as recorded by lake sediments in Argentina. Geophys J 74:199–221

    Google Scholar 

  • Cressy JP Jr, Bogard DD (1976) On the calculation of cosmic-ray exposure ages of stone meteorites. Geochim Cosmochim Acta 40:749–762

    Google Scholar 

  • Criss RE, Lanphere MA, Taylor HP Jr (1982) Effects of regional uplift, deformation, and meteoric-hydrothermal metamorphism on K-Ar ages of biotites in the southern half of the Idaho Batholith. J Geophys Res 87(B8): 7029–7046

    Google Scholar 

  • Cronin JE, Boaz NT, Stringer CB, Rak Y (1981) Tempo and mode in hominid evolution. Nature (Lond) 292:113–120

    Google Scholar 

  • Crough ST (1983) Apatite fission-track dating of erosion in the eastern Andes, Bolivia. Earth Plan Sci Lett 64:396–397

    Google Scholar 

  • Crozaz G (1981) Fission tracks and cooling rates of meteorites. Proc Earth Planet Sci 90:383–388

    Google Scholar 

  • Crozaz G, Langway CC (1966) Dating of Greenland fira ice cores with 210Pb. Earth Planet Sci Lett 1:194–196

    Google Scholar 

  • Cumming GL, Richards JR (1975) Ore lead isotope ratios in a continuously changing earth. Earth Planet Sci Lett 28:155–171

    Google Scholar 

  • Cumming GL, Eckstrand OR, Peredery WV (1982) Geochronologic interpretations of Pb isotope ratios in nickel sulfides of the Thompson Belt, Manitoba. Can J Earth Sci 19:2306–2324

    Google Scholar 

  • Cunningham R, Burnett WC (1985) Amino acid biogeochemistry and dating of offshore Peru/Chile phosphorites. Geochim Cosmchim Acta 49:1413–1419

    Google Scholar 

  • Currie LA (1968) Limits for qualitative detection and quantitative determination. Anal Chem 40:586–589

    Google Scholar 

  • Currie LA (1972) The limit of precision in nuclear and analytical chemistry. Nucl Instrum Methods 100:387–395

    Google Scholar 

  • Currie LA (ed) (1982) Nuclear and Chemical Dating Techniques. Interpreting the Environmental Record. Am Chem Soc Symp Ser 176:516 ACS, Washington DC

    Google Scholar 

  • Currie LA, Klouda GA, Continetti RE, Kaplan IR, Wong WW, Dzubay TG, Stevens RK (1983) On the origin of carbonaceous particles in American cities: results of radiocarbon “dating” and chemical characterization. Radiocarbon 25(2): 603–614

    Google Scholar 

  • Currie LA, Klouda GA, Voorhees KJ (1984) Atmospheric carbon: the importance of accelerator mass spectrometry. Nucl Instrum Methods 233(B5): 371–379

    Google Scholar 

  • Currie LA, Stafford TW, Sheffield AE, Klouda GA, Wise SA, Fletcher RA, Donahue DJ, Jull AJT, Linick TW (1989) Microchemical and molecular dating. Radiocarbon 31(3) (in press)

    Google Scholar 

  • Czamanske GK, Lanphere MA, Erd RC, Blake MC Jr (1978) Age measurements of potassium-bearing sulfide minerals by the 40Ar/39Ar technique. Earth Planet Sci Lett 40:107–110

    Google Scholar 

  • Dallmeyer RD (1979) 40Ar/39Ar dating: principles, techniques, and applications in orogenic terranes. In: Jäger E, Hunziker JC (eds) Lectures in isotope geology. Springer, Berlin Heidelberg New York, pp 77–104

    Google Scholar 

  • Dalrymple GB, Lanphere MA (1969)Potassium-argon dating. Freeman, San Francisco, 258 pp

    Google Scholar 

  • Dalrymple GB, Lanphere MA (1971) 40Ar/39Ar technique of K-Ar dating: a comparison with the conventional technique. Earth Planet Sci Lett 12:300–308

    Google Scholar 

  • Dalrymple GB, Lanphere MA (1974) 40Ar/39Ar age spectra of some undisturbed terrestrial samples. Geochim Cosmochim Acta 38:715–738

    Google Scholar 

  • Dalton P (1972) A new method of dating bone. MASCA Newslett 8:1–2

    Google Scholar 

  • Damon PE (1970) A theory of “real” K-Ar clocks. Eclogae Geol Helv 63:69–76

    Google Scholar 

  • Damon PE, Linick TW (1986) Geomagnetic-heliomagnetic modulation of atmospheric radiocarbon production. Radiocarbon 28, 2A:266–278

    Google Scholar 

  • Daniels F, Boyd CA, Saunders DF (1953) Thermoluminescence as a research tool. Science 117:343–349

    Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Google Scholar 

  • Dansgaard W (1981) Ice core studies: dating the past to find the future. Nature (Lond) 290:360–361

    Google Scholar 

  • Dansgaard W (1985) Greenland ice core studies. Palaeogeogr Palaeoclimat Palaeoecol 50:185–187

    Google Scholar 

  • Dansgaard W, Johnsen SJ, Mølier J, Langway CC Jr (1969) One thousand centuries of climatic record from Camp Century of the Greenland ice sheet. Science 166:377–381

    Google Scholar 

  • Dansgaard W, Johnsen SJ, Clausen HB, Langway CC Jr (1971) 3. Climatic record revealed by the Camp Century ice core. In: Turekian KK (ed) The Late Cenozoic Glacial Ages. Yale University, New Haven, pp 37–56

    Google Scholar 

  • Dansgaard W, Clausen HB, Gundstrup N, Hammer CV, Johnson SF, Kristindottir PM, Rech N (1982) A new Greenland ice-core. Science 218:1273–1277

    Google Scholar 

  • Davis DW (1982) Optimum linear regression and error estimation applied to U-Pb data. Can J Earth Sci 19:2141–2149

    Google Scholar 

  • Davis P, Smith J, Kukla GJ, Opdyke ND (1977) Paleomagnetic study at a nuclear plant site near Bakersfield, California. Q Res 7:380–397

    Google Scholar 

  • Davis R, Schaeffer OA (1955) Chlorine-36 in nature. Ann NY Acad Sci 62:107–121

    Google Scholar 

  • Davis RB, Hess CT, Norton SA, Hanson DW, Hoagland KD, Anderson DS (1984) 137Cs and 210Pb dating of sediments from soft-water lakes in New England (U.S.A.) and Scandinavia, a failure of 137Cs dating. Chem Geol 44:151–185

    Google Scholar 

  • Davis SN, De Wiest RJM (1966) Hydrogeology. Wiley, New York, 453 pp

    Google Scholar 

  • De Atley SP (1980) Radiocarbon dating of ceramic materials: progress and prospects. Radiocarbon 22(2): 987–993

    Google Scholar 

  • Debenham NC (1983) Reliability of thermoluminescence dating of stalagmitic calcite. Nature (Lond) 304:154–156

    Google Scholar 

  • Debenham NC, Aitken MJ (1984) TL dating of stalagmitic calcite. Archeometry 26:155–170

    Google Scholar 

  • Debuyst R, Dejehet F, Grün R, Apers D, de Cannière P (1984) Possibility of ESR-dating without determination of the annual dose. J Radioanal Nucl Chem Lett 86:399–410

    Google Scholar 

  • Deevey ES Jr, Gross MS, Hurchinson GE, Kraybil HL (1954) The natural 14C contents of materials from hard-water lakes. Proc Nat Acad Sci Wash 40:285–288

    Google Scholar 

  • Degens ET, Kempe S, Spitzy A (1984) Carbon dioxide: a biogeochemical portrait. In: Hutzinger O (ed) The Handbook of Environmental Chemistry, vol I, Part C. Springer, Berlin Heidelberg New York Tokyo, pp 127–215

    Google Scholar 

  • de Jong AFM, Mook WG (1982) An anomalous SUESS effect above Europe. Nature (Lond) 298:641–644

    Google Scholar 

  • de Jong AFM, Mook WG, Becker B (1979) Confirmation of the SUESS wiggles: 3200-3700 BC. Nature (Lond) 280:48–49

    Google Scholar 

  • de Jong E, Begg CBM, Kachanoski RG (1983) Estimates of soil erosion and deposition for some Saskatchewan soils. Can J Soil Sci 63:607–617

    Google Scholar 

  • Delaloye M (1979) The total lead method. In: Jäger E, Hunziker JC (eds) Lectures in isotope geology. Springer, Berlin Heidelberg New York, pp 132–133

    Google Scholar 

  • Delaune RD, Patrick WH Jr, Buresh RJ (1978) Sedimentation rates determined by 137Cs dating in a rapidly accreting salt marsh. Nature (Lond) 275:532–533

    Google Scholar 

  • Del Moro A, Puxeddu M, Radicati di Brozolo F, Villa IM (1982) Rb-Sr and K-Ar ages on minerals at temperatures of 300–400°C from deep wells in the Larderello geothermal field (Italy). Contrib Mineral Petrol 81:340–349

    Google Scholar 

  • Deloule E, Allègre CJ, Doe B (1986) Lead and sulfur isotope microstratigraphy in galena crystals from Mississippi Valley-type deposits. Econ Geol 81:1307–1321

    Google Scholar 

  • de Niro MJ, Epstein S (1981) Isotopic composition of cellulose from aquatic organisms. Geochim Cosmochim Acta 45:1885–1894

    Google Scholar 

  • Denninger E (1971) The use of paper chromatography to determine the age of albuminous binders and its application to rock paintings. Suppl Afric J Sci 2:81–84

    Google Scholar 

  • DePaolo DJ (1981a) Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature (Lond) 291: 193–196

    Google Scholar 

  • DePaolo DJ (1981b) Nd isotopic studies: Some new perspectives on earth structure and evolution. EOS 62: 137–140

    Google Scholar 

  • DePaolo DJ (1988) Neodymium isotope geochemistry. Springer, Berlin Heidelberg, New York, Tokyo

    Google Scholar 

  • DePaolo DJ, Wasserburg GJ (1976a) Nd isotopic variations and petrogenetic models. Geophys Res Lett 3: 249–252

    Google Scholar 

  • DePaolo DJ, Wasserburg GJ (1976b) Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophys Res Lett 3: 743–746

    Google Scholar 

  • DePaolo DJ, Wasserburg GJ (1979a) Petrogenetic mixing models and Nd-Sr isotopic patterns. Geochim Cosmochim Acta 43: 615–627

    Google Scholar 

  • DePaolo DJ, Wasserburg GJ (1979b) Sm-Nd age of the Stillwater complex and the mantle evolution curve for neodymium. Geochim Cosmochim Acta 43: 999–1008

    Google Scholar 

  • DePaolo DJ, Manton WI, Grew ES, Halpern M (1982) Sm-Nd, Rb-Sr and U-Th-Pb systematics of granulite fades rocks from Fyfe Hills, Enderby Land, Antarctica. Nature (Lond) 298:614–618

    Google Scholar 

  • DePaolo DJ, Kyte FT, Marshall BD, O’Neil JR, Smit J (1983) Rb-Sr, Sm-Nd, K-Ca, O, and H isotopic study of Cretaceous-Tertiary boundary sediments, Caravaca, Spain: evidence for an oceanic impact site. Earth Planet Sci Lett 64:356–373

    Google Scholar 

  • Dermott SF (ed) (1978) The Origin of the Solar System. Wiley, New York

    Google Scholar 

  • Deutsch S, Hirschberg D, Picciotto E (1956) Etude quantitative des halos pleochroiques. Bull Soc Belge Geol Paleontol Hydrol 65:267–281

    Google Scholar 

  • de Vries H1 (1958) Variation in concentration of radiocarbon with time and location on earth. Kon Ned Akad Wet Proc Ser B 61:94–102

    Google Scholar 

  • Dickson BL, Davidson MR (1985) Interpretation of 234U/238U activity ratios in groundwaters. Chem Geol 58:83–88

    Google Scholar 

  • Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259–274

    Google Scholar 

  • Dodson MH (1976) Kinetic processes and thermal history of slowly cooling solids. Nature (Lond) 259:551–553

    Google Scholar 

  • Dodson MH (1979) Theory of cooling ages. In: Jäger E, Hunziker JC (eds) Lectures in isotope geology. Springer, Berlin Heidelberg New York, pp 194–202

    Google Scholar 

  • Doe BR (1970) Lead isotopes. Minerals, rocks, and inorganic materials 3. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Doe BR (1983) The past is the key to the future. Geochim Cosmochim Acta 47:1341–1354

    Google Scholar 

  • Doe BR, Stacey JS (1974) The application of lead isotopes to the problem of ore genesis and ore prospect evaluation: a review. Econ Geol 69:757–776

    Google Scholar 

  • Doe BR, Zartman RE (1979) Plumbotectonics: the Phanerozoics. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 22–70

    Google Scholar 

  • Dominik J, Forstner U, Mangini A, Reineck H-E (1978) 210Pb and 137Cs chronology of heavy metal pollution in a sediment core from the German Bight (North Sea). Senckenbergiana Mar 10:213–227

    Google Scholar 

  • Dorn RI, Bamforth DB, Cahill TA, Dohrenwend JC, Turrin BD, Donahue DJ, Jull AJT, Long A, Macko ME, Weil EB, Whitley DS, Zabel TH (1986) Cation-ratio and acceleration radiocarbon dating of rock varnish on Mojave artifacts and landforms. Science 231:830–833

    Google Scholar 

  • Downes H (1984) Sr and Nd isotope geochemistry of coexisting alkaline magma series, Cantal, Massif Central, France. Earth Planet Sci Lett 69:321–334

    Google Scholar 

  • Drozd RJ, Podosek FA (1976) Primordial 129Xe in meteorites. Earth Planet Sci Lett 31:15–30

    Google Scholar 

  • Drozd RJ, Hohenberg CM, Morgan CJ (1974) Heavy rare gases from Rabbit Lake (Canada) and the Oklo mine (Gabon): natural spontaneous chain reactions in old uranium deposits. Earth Planet Sci Lett 23:28–32

    Google Scholar 

  • Drozd RJ, Morgan CJ, Podosek FA, Poupeau G, Shirck JR, Taylor GJ (1977) 244Pu in the solar system. Astrophys J 212:567–580

    Google Scholar 

  • Druffel EM (1982) Banded corals: Changes in oceanic carbon-14 during the Little Ice Age. Science 218:13–19

    Google Scholar 

  • Druffel EM, Mok HYI (1983) Time history of human gallstones: application of the post-bomb radiocarbon signal. Radiocarbon 25(2): 629–636

    Google Scholar 

  • Duckworth HE, Barber RC, Venkatasubramanian VS (1986) Mass Spectrometry (2nd ed). Cambridge Monographs on Physics. Cambridge University Press, Cambridge London New York New Rochell Melbourne Sydney. 337 pp

    Google Scholar 

  • Dunbar RB, Wefer G (1984) Stable isotope fractionation in benthic foraminifera from the Peruvian continental margin. Mar Geol 59:215–225

    Google Scholar 

  • Dungworth G (1976) Optical configuration and the racemisation of amino acids in sediments and in fossils—a review. Chem Geol 17:135–153

    Google Scholar 

  • Dunning GR, Krogh TE, Pedersen RB (1986) U/Pb zircon ages of Appalachian-Caledonian ophiolites. Terra Cognita 6:155

    Google Scholar 

  • Duplessy J-C, Lalou C, Vinot AL (1970) Differential isotopic fractionation in benthic foraminifera and paleotemperatures reassessed. Science 168:250–251

    Google Scholar 

  • Dupont LM, Brenninkmeijer CAM (1984) Palaeobotanic and isotopic analysis of late Subboreal and early Subatlantic peat from Engbertsdijksveen VII, The Netherlands. Rev Palaeobot Palynol 41:241–271

    Google Scholar 

  • Dymond J (1969) Age determinations of deep-sea sediments: a comparison of three methods. Earth Planet Sci Lett 6:9–14

    Google Scholar 

  • Dymond J, Cobler R, Gordon L, Biscaye P, Mathieu G (1983) 226Ra and 226Rn contents of Galapagos Rift hydrothermal waters — the importance of low-temperature interactions with crustal rocks. Earth Planet Sci Lett 64:417–429

    Google Scholar 

  • Easterbrook DJ (ed) (1988) Dating Quaternary Sediments. Geol Soc Am Special paper 227:165pp; Boulder

    Google Scholar 

  • Eberhardt P, Eugster O, Geiss J, Marti K (1966) Rare gas measurements in 30 stone meteorites. Z Naturforsch 21a:414–416

    Google Scholar 

  • Eberhardt P, Geiss J, Grögler N, Krähenbühl U, Mörgeli M, Stettier A (1971) Potassium-argon age of Apollo 11 rock 10003. Earth Planet Sci Lett 11:245–247

    Google Scholar 

  • Eckstein D, Baillie MGL, Egger H (1984) Dendrochronological Dating. Handb Archaeol 2:55. Eur Sci Found Strasbourg

    Google Scholar 

  • Edwards RL, Chen JH, Wasserburg GJ (1986/87) 238U-234U-230Th-232Th systematic and the precice measurement of time over the past 500,000 years. Earth Planet Sci Lett 81:175–192

    Google Scholar 

  • Edwards RL, Taylor FW, Wasserburg GJ (1988) Dating earthquakes with high-precision thorium-230 ages of very young corals. Earth Planet Sci Letters 90:371–381

    Google Scholar 

  • Edwards TWD, Fritz P (1986) Assessing meteoric water composition and relative humidity from 18O and 2H in wood cellulose. Paleoclimatic implications for southern Ontario, Canada. Appl Geochem 1:715–723

    Google Scholar 

  • Egboka BCE (1985) Appropriate monitoring techniques using bomb tritium and other geochemical parameters in hydrogeological investigations. Hydrol Sci J Sci Hydrol 30:207–224

    Google Scholar 

  • Ehmann WD, Kohman TB (1958) Cosmic-ray induced radioactivity in meteorites — I. Chemical and radiometric procedures for aluminium, beryllium, and cobalt. II. 26Al, 10Be, 60Co in aerolites, siderites, and tektites. Geochem Cosmichim Acta 14:340–363 and 364–379

    Google Scholar 

  • Eicher U, Siegenthaler U, Wegmüller S (1981) Pollen and oxygen isotope analyses on late and postglacial sediments of the Tourbiere de Chirens (Dauphin, France). Q Res 15(2): 160–170

    Google Scholar 

  • Eisenbud M, Bennett B, Blanco RE, Compere EL, Goldberg E, Jacobs DG, Koranda J, Moghissi AA, Rust J, Soldat JK (1979) Tritium in the environment — NCRP Report No. 62. In: Behaviour of Tritium in the Environment:585–588. IAEA, Vienna

    Google Scholar 

  • El-Daoushy F, Tolonen K (1984) Lead-210 and heavy metal contents in dated ombrotrophic peathummocks from Finland. Nucl Instrum Methods 223:329–399

    Google Scholar 

  • El-Daoushy F, Tolonen K, Rosenberg R (1982) Lead-210 and moss-increment dating of two Finnish sphagnum hummocks. Nature (Lond) 296:429–431

    Google Scholar 

  • Elitzsch C, Pernicka E, Wagner GA (1983) Thermoluminescence dating of archaeometallurgical slags. PACT 9:271–286

    Google Scholar 

  • Ellins KK (1988) The application of 222Rn in measuring groundwater discharge to the Martha Brae River, Jamaica. Symp Tropical Hydrol 2nd Carribean Islands Water Res Congr AWRA (Am Water Res Ass) Techn Publ Ser TPS-85-1:64-68

    Google Scholar 

  • Elmore D (1986) 36C1 and 129I geochemistry. Terra Cognita 6:121

    Google Scholar 

  • Elmore D, Gove HE, Ferraro R, Kilius LR, Lee HW, Chang KH, Beukens RP, Litherland AE, Russo CJ, Purser KH, Murreil MT, Finkel RC (1980) Determination of 129I using tandem accelerator mass spectrometry. Nature (Lond) 286:138–139

    Google Scholar 

  • Elmore D, Tubbs LE, Newman D, Ma XZ, Finkel R, Nishiizumi K, Beer J, Oeschger H, Andree M (1982) 36C1 bomb pulse measured in a shallow ice core from Dye 3, Greenland. Nature (Lond) 300:735–737

    Google Scholar 

  • Elmore D, Conard NJ, Kubik PW, Gove HE, Wahlen M, Beer J, Suter M (1987) 36C1 and 10Be profiles in Greenland ice. Dating and production rate variations. Nucl Instrum Methods Phys Res B 29:207–217

    Google Scholar 

  • Elsinger RJ, Moore WS (1983) 224Ra, 228Ra, and 226Ra in Winyah Bay and Delaware Bay. Earth Planet Sci Lett 64:430–436

    Google Scholar 

  • Emiliani C (1954) Temperatures of Pacific bottom waters and polar superficial waters during the Tertiary. Science 119:853–855

    Google Scholar 

  • Emiliani C (1955) Pleistocene temperatures. J Geol 63:538–573

    Google Scholar 

  • Emiliani C (1966) Isotope palaeotemperatures. Science 154:851–857

    Google Scholar 

  • Emmermann R (1977) A petrogenetic model for the origin and evolution of the Hercynian granite series of the Schwarzwald. N Jahrb Mineral Abh 128:219–253

    Google Scholar 

  • Engel MH, Hare PE (1985) Gas liquid chromatographic separation of amino acids and their derivates. In: Garrett GC (ed) Chemistry and biochemistry of the amino acids. Chapman and Hall, London, pp 462–479

    Google Scholar 

  • Engels JC, Ingamells CO (1970) Effect of sample inhomogeneity in K-Ar dating. Geochim Cosmochim Acta 34:1007–1017

    Google Scholar 

  • Englert P, Herr W (1978) A study on exposure ages of chondrites based on spallogenic 53Mn. Geochim Cosmochim Acta 42:1635–1643

    Google Scholar 

  • Englert P, Theis S, Michel R, Tuniz C, Moniot RK, Vajda S, Kruse TH, Pal DK, Herzog GF (1984) Production of 7Be, 22Na, 24Na, and 10Be from Alina 47r-irradiated meteorite model. Nucl Instrum Methods B5:415–419

    Google Scholar 

  • Ennis P, Noltmann EA, Hare PE, Slota PJ Jr, Payen LA, Prior CA, Taylor RE (1986) Use of AMS 14C analysis in the study of problems in asparctic acid racemization-deduced age estimates on bone. Radiocarbon 28(2A): 539–546

    Google Scholar 

  • Ensley RA, Verosub KL (1982) A magnetostratigraphic study of the sediments of the Ridge Basin, southern California and its tectonic and sedimentologic implications. Earth Planet Sci Lett 59:192–207

    Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Am Bull 64:1315–1325

    Google Scholar 

  • Eriksson E (1958) The possible use of tritium for estimating groundwater storage. Tellus 10:472–478

    Google Scholar 

  • Erlenkeuser H, Suess G, Willkomm H (1974) Industrialization affects heavy metal and carbon isotope concentrations in recent Baltic Sea sediments. Geochim Cosmochim Acta 38:823–842

    Google Scholar 

  • Esenov SE, Egizbayeva KE, Kalinin SK, Fayn EE (1970) Radiogenic osmium in rhenium-bearing ores. Geokhimiya 5:610–615

    Google Scholar 

  • Eugster O (1988) Cosmic-ray production rates for 3He, 21Ne, 38Ar, 83Kr, and 126Xe in chondrites based on 81Kr-Kr exposure ages. Geochim Cosmochim Acta 52:1649–1662

    Google Scholar 

  • Eugster O, Eberhardt P, Geiss J (1967a) 81Kr in meteorites and 81Kr radiation ages. Earth Planet Sci Lett 2: 77–82

    Google Scholar 

  • Eugster O, Eberhardt P, Geiss J (1967b) The isotopic composition of krypton in unequilibrated and gas-rich chondrites. Earth Planet Sci Lett 3: 249–257

    Google Scholar 

  • Evans ME (1983) Do the earth’s magnetic poles move? Naturwissenschaften 70:485–494

    Google Scholar 

  • Everst DA (1964) The chemistry of beryllium. In: Robinson PL (ed) Topics in inorganic and general chemistry. A collection of Monographies. Elsevier, Amsterdam, 150 pp

    Google Scholar 

  • Evin J (1983) Materials of terrestrial origin used for radiocarbon dating. In: Mook WG, Waterbolk HT (eds) 14C and archaeology. PACT 8:235–275

    Google Scholar 

  • Evin J, Marechal J, Pachiaudi C, Puissegur JJ (1980) Conditions involved in dating terrestrial shells. Radiocarbon 22(II): 545–555

    Google Scholar 

  • Fabryka-Martin J, Bentley H, Elmore D, Airey PL (1985) Natural iodine-129 as an environmental tracer. Geochem Cocmochim Acta 49:337–347

    Google Scholar 

  • Fabryka-Martin J, Davis SN, Elmore D (1987) Application of 129I and 36C1 in hydrology. Nucl Instrum Methods Phys Res B 29:361–371

    Google Scholar 

  • Fagg BEB, Fleming SF (1970) Thermoluminescent dating of a terracotta of the NOK culture, Nigeria. Archaeometry 12:53–55

    Google Scholar 

  • Fanale FP (1971) A case for catastrophic early degassing of the Earth. Chem Geol 8:79–105

    Google Scholar 

  • Fanale FP, Kulp JL (1962) The helium method and the age of the Cornwall, Pennsylvania magnetite ore. Econ Geol 57:735–746

    Google Scholar 

  • Fanale FP, Schaeffer OA (1965) Helium-uranium ratios for Pleistocene and Tertiary fossil aragonites. Science 149:312–316

    Google Scholar 

  • Fantidis J, Ehhalt DH (1970) Variations of the carbon and oxygen isotopic composition in stalagmites and stalactites: evidence of non-equilibrium isotopic fractionation. Earth Planet Sci Lett 10:136–144

    Google Scholar 

  • Fassett JD, Moore LJ, Travis JC, DeVoe JR (1985) Laser resonance ionization mass spectrometry. Science 230:262–267

    Google Scholar 

  • Faure G (1977) Principles of Isotope Geology, 1st ed. Wiley, New York, 461 pp

    Google Scholar 

  • Faure G (1982) The marine-strontium geochronometer. In: Odin GS (ed) Numerical dating in stratigraphy, part I. Wiley, Chichester, pp 73–79

    Google Scholar 

  • Faure G (1986) Principles of Isotope Geology, 2nd edn. Wiley, New York, 589 pp

    Google Scholar 

  • Faure G, Powell JL (1972) Strontium isotope geology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fehn U, Holdren GR, Elmore D, Brunelle T, Teng R, Kubik PW (1986 a) Determination of natural and anthropogenic 129I in marine sediments. Geophys Res Lett 13(1): 137–139

    Google Scholar 

  • Fehn U, Teng R, Elmore D, Kubik PW (1986b) Isotopic composition of osmium in terrestrial samples determined by accelerator mass spectrometry. Nature (Lond) 323: 707–710

    Google Scholar 

  • Fehn U, Tullai S, Teng RTD, Elmore D, Kubik PW (1987) Determination of 129I in heavy residues of two crude oils. Nucli Instrum Methods Phys Res B 29:380–382

    Google Scholar 

  • Feige Y, Oltman BG, Kastner J (1968) Production rates of neutrons in soils due to natural radioactivity. J Geophys Res 73:3135–3142

    Google Scholar 

  • Ferguson CW, Huber B, Suess HE (1966) Determination of the age of Swiss lake dwellings as an example of dendrochronologically calibrated radiocarbon dating. Z Naturforsch 21a:1173–1177

    Google Scholar 

  • Ferreira MP, Macedo R, Costa V, Reynolds JH, Riley JE Jr, Rowe MW (1975) Rare-gas dating, II. Attempted uranium-helium dating of young volcanic rocks from the Madaira Archipelago. Earth Planet Sci Lett 25:142–150

    Google Scholar 

  • Finkel RC (1981) Uranium concentrations and 234U/238U activity ratios in fault-associated groundwater as possible earthquake precursors. Geophys Res Lett 8:453–456

    Google Scholar 

  • Finkel RC, Langway CC Jr (1985) Global and local influences on the chemical composition of snowfall at Dye 3, Greenland: the record between 10 ka B.P. and 40 ka B.P. Earth Planet Sci Lett 73:196–206

    Google Scholar 

  • Fireman EL (1986) Uranium series dating of Allan Hills ice. J Geophys Res 91(B4): D539–544

    Google Scholar 

  • Fischer P, Noren J, Lossing A, Odelius H (1986) Quantitative SIMS of prehistoric teeth. Archaeometry Conf, Athens

    Google Scholar 

  • Fisher DA, Koerner RM, Paterson WSB, Dansgaard W, Gundestrup N, Reeh N (1983) Effect of wind scouring on climatic records from ice-core oxygen-isotope profiles. Nature (Lond) 301:205–209

    Google Scholar 

  • Fisher DE (1978) Terrestrial potassium-argon abundances as limits to models of atmospheric evolution. In: Alexander EC (ed) Terrestrial rare gases. Japan Scientific Press, Tokyo, pp 173–183

    Google Scholar 

  • Fitch FJ, Forster SC, Miller JA (1974) Geological time scale. Rep Prog Phys 37:1433–1496

    Google Scholar 

  • Fitch WM (1977) Molecular Evolutionary Clocks. In: Ayala FJ (ed) Molecular Evolution. Sinauer Ass, Sunderland Mass, pp 160–178

    Google Scholar 

  • Fleck RJ, Coleman RG, Cornwall HR, Greenwood WR, Hadley DG, Schmidt DL, Prinz WC, Ratt JC (1976) Geochronology of the Arabian Shield, western Saudi Arabia: K-Ar results. Geol Soc Am Bull 87:9–21

    Google Scholar 

  • Fleischer RL (1975) Advances in fission track dating. World Archaeol 7:136–150

    Google Scholar 

  • Fleischer RL (1982) Alpha-recoil damage and solution effects in minerals: uranium isotopic disequilibrium and radon release. Geochim Cosmochim Acta 46:2191–2201

    Google Scholar 

  • Fleischer RL, Price PB (1964) Decay constant for spontaneous fission of 238U. Phys Rev 133(1B): 63–64

    Google Scholar 

  • Fleischer RL, Price PB, Walker RM (1965) Effects of temperature, pressure, and ionization on the formation and stability of fission tracks in minerals and glasses. J Geophys Res 70:1497–1502

    Google Scholar 

  • Fleischer RL, Price PB, Walker RM (1975) Nuclear Tracks in Solids. Principles and Applications. Univ California Press, Los Angeles, 605 pp

    Google Scholar 

  • Fleishman DG, Gorin VD, Gritschenko ZG (1987) Cosmogenic 22Na and dating of natural fresh waters. In: Povinec P (ed) Low-level Counting and Spectrometry VEDA, Bratislava, pp 123–126

    Google Scholar 

  • Fleming SJ (1970) Thermoluminescence dating: refinement of the quartz inclusion method. Archaeometry 12:53–55

    Google Scholar 

  • Fleming SJ (1972) Thermoluminescence authenticity testing of ancient ceramics using radiation-sensitivity changes in quartz. Naturwissenschaften 59:145–151

    Google Scholar 

  • Fleming SJ (1973) The pre-dose technique: a new thermoluminescent dating method. Archaeometry 15:13–30

    Google Scholar 

  • Fleming SJ (1976) Dating in Archaeology.A Guide to Scientific Techniques, London

    Google Scholar 

  • Fleming SJ, Stoneham D (1973) The subtraction technique of thermoluminescent dating. Archaeometry 15:229–238

    Google Scholar 

  • Fleming SJ, Moss HM, Joseph A (1970) Thermoluminescence authenticity testing of some “six dynasties” figures. Archaeometry 12:57–65

    Google Scholar 

  • Fletcher IR, Rosman KJR (1982) Precise determination of initial εNd from Sm-Nd isochron data. Geochim Cosmochim Acta 46:1983–1987

    Google Scholar 

  • Fleyshman DG, Kanevskiy YP, Gritchenko ZG (1975) Age determination on natural waters with cosmic-ray and man-made 22Na. Geochemistry Intern 12(1): p 201

    Google Scholar 

  • Florkowski T, Morawska L, Rozanski K (1988) Natural production of radionuclides in geological formations. Nucl Geophys 2:1–14

    Google Scholar 

  • Förstel H, Hützen H (1983) Oxygen isotope ratios in German groundwater. Nature (Lond) 304:614–616

    Google Scholar 

  • Foland KA, Linder JS, Laskowski TE, Grant NK (1984) 40Ar/39Ar dating of glauconites: measured 39Ar recoil loss from well-crystallized samples. Isot Geosci 2:241–264

    Google Scholar 

  • Folgheraiter G (1899) Sur les variations seculaires de l’inclinaison magnetique dans l’antique. Arch Sci Phys Nat 8:5–16

    Google Scholar 

  • Folk RL, Valastro S Jr (1979) Dating of lime mortar by 14C. In: Berger R, Suess HE (eds) Radiocarbon Dating. Univ California Press, Los Angeles, pp 721–732

    Google Scholar 

  • Fontes JC (1980) Environmental isotopes in groundwater hydrology. In: Fritz P, Fontes JC (eds) Handbook of Environmental Isotope Geochemistry, vol 1, The Terrestrial Environment A. Elsevier, Amsterdam, pp 75–140

    Google Scholar 

  • Fontes JC (1985) Some considerations on groundwater dating using environmental isotopes. In: Hydrogeology in the Service of Man. Mem IAH, Cambridge, pp 118–154

    Google Scholar 

  • Fontes JC, Garnier J-M (1979) Determination of the initial 14C activity of the total dissolved carbon. A review of the existing models and a new approach. Water Resour Res 15:399–413

    Google Scholar 

  • Forman SL (1989) Applications and limitations of thermoluminescenee to date Quarternary sediments. Quatern Int 1:47–59

    Google Scholar 

  • François LM, Gerard J-C (1986) A numerical model of the evolution of ocean sulfate and sedimentary sulfur during the last 800 million years. Geochim Cosmochim Acta 50:2289–2302

    Google Scholar 

  • Franke HW (1951) Altersbestimmung von Kalzit-Konkretionent mit radioaktivem Kohlenstoff. Naturwissenschaften 22:527

    Google Scholar 

  • Franke HW (1966) Zur Entnahme von Sinterproben für Radiocarbondatierungen. Höhle 17:92–95

    Google Scholar 

  • Franke T, Fröhlich K, Gellermann R, Hebert D (1986) 32Si in precipitation of Freiberg, GDR. J Radioanal Nucl Chem Lett 103(1): 11–18

    Google Scholar 

  • Frape SK, Fritz P (1982) The chemistry and isotope composition of saline groundwaters from the Sudbury Basin, Ontario. Can J Earth Sci 19:645–661

    Google Scholar 

  • Freer R (1981) Diffusion in silicate minerals and glasses: a data digest and guide to the literature. Contrib Mineral Petrol 76:440–454

    Google Scholar 

  • Freundel M, Schultz L, Reedy RC (1986) Terrestrial 81Kr-Kr ages of Antarctic meteorites. Geochim Cosmochim Acta 50:2663–2673

    Google Scholar 

  • Friedman I (1983) Paleoclimate evidence from stable isotopes. In: Wright HE (ed) Late Quaternary Environments of the United States, vol I. The Late Pleistocene (Porter SC ed). Longman, London, pp 385–389

    Google Scholar 

  • Friedman I, Long W (1976) Hydration rate of obsidian. Science 191:347–352

    Google Scholar 

  • Friedman I, Obradovich J (1981) Obsidian hydration dating of vulcanic events. Q Res 16:37–47

    Google Scholar 

  • Friedman I, Smith RL (1960) A new dating method using obsidian: Part I, the development of the method. Am Antiq 25:476–493

    Google Scholar 

  • Fritz P, Fontes JC (eds) (1980) Handbook of Environmental Isotope Geochemistry, vol 1. The Terrestrial Environment A. Elsevier, Amsterdam, 546 pp

    Google Scholar 

  • Fritz P, Fontes JC (eds) (1986) Handbook of Environmental Isotope Geochemistry, vol 2. The Terrestrial Environment B. Elsevier, Amsterdam, 557 pp

    Google Scholar 

  • Fröhlich K, Gellermann R (1986) On the potential use of uranium isotopes for groundwater dating. Isot Geosci Sect 65:67–77

    Google Scholar 

  • Fröhlich K, Milde G, Hebert D, Kater R (1974) Methodische und meβtechnische Erkenntnisse über die Anwendung von Tritium, 14C-und 32Si-Bestimmugen für hydrogeologische Aufgaben. Z Angew Geol 20:16–21

    Google Scholar 

  • Fröhlich K, Gellermann R, Hebert D (1984) Uranium isotopes in a sandstone aquifer: Interpretation of data and implications for groundwater dating. In: Isotope Hydrology 1983:447–466. IAEA, Vienna

    Google Scholar 

  • Fröhlich K, Franke T, Gellermann R, Hebert D, Jordan H (1987) Silicon-32 in different aquifer types and implications for groundwater dating. In: Isotope Techniques in Water Resources Development: 149–163. IAEA, Vienna

    Google Scholar 

  • Fryer BJ, Taylor RP (1984) Sm-Nd direct dating of the Collins Bay hydrothermal uranium deposit, Saskatchewan. Geology 12:479–482

    Google Scholar 

  • Fuhrmann U, Lippolt HJ (1985) Excess argon and dating of Quaternary Eifel volcanism. I. The Schellkopf phonolite. N Jahrb Geol Paläont Mh, pp 484-497

    Google Scholar 

  • Fuhrmann U, Lippolt HJ (1986) Excess argon and dating of Quaternary Eifel volcanism: II. Phonolitic and foiditic rocks near Rieden, East Eifel, FRG. N Jahrb Geol Paläont Abh 172:1–19

    Google Scholar 

  • Fukuchi T, Imai N, Shimokawa K (1986) ESR dating of fault movement using various defects centres in quartz; the case in the western South Fossa Magma, Japan. Earth Planet Sci Lett 78:121–128

    Google Scholar 

  • Fullagar PD, Ragland PC (1975) Chemical weathering and Rb-Sr whole rock ages. Geochim Cosmochim Acta 39:1245–1252

    Google Scholar 

  • Fullagar PD, Lemmon RE, Ragland PC (1971) Petrochemical and geochronological studies of plutonic rocks in the southern Appalachians: part 1. The Salisbury Pluton. Geol Soc Am Bull 82:409–416

    Google Scholar 

  • Gabasio M, Evin J, Arnal GB, Andrieux P (1986) Origins of carbon in potsherds. Radiocarbon 28(2A): 711–718

    Google Scholar 

  • Gaffney JS, Premuzic ET, Manowitz B (1980) On the usefulness of sulfur isotope ratios in crude oil correlations. Geochim Cosmochim Acta 44:135–139

    Google Scholar 

  • Gale NH (1972) Uranium-lead systematics in Lunar basalts. Earth Planet Sci Lett 17:65–78

    Google Scholar 

  • Gale NH, Mussett AE (1973) Episodic uranium-lead models and the interpretation of variations in the isotopic composition of lead in rocks. Rev Geophys Space Phys 11:37–86

    Google Scholar 

  • Gale NH, Beckinsale RD, Wadge AJ (1979) Rb-Sr whole rock dating of acid rocks. Geochim J 13:27–79

    Google Scholar 

  • Galliker D, Hugentobler E, Hahn E (1970) Spontane Kernspaltung von 238-U und 241-Am. Helv Phys Acta 43:593–606

    Google Scholar 

  • Ganapathy R (1982) Evidence for a major meteorite impact on the earth 34 million years ago: implication for Eocene extinctions. Science 216:885–886

    Google Scholar 

  • Gancarz A, Tera F, Wasserburg G (1975) 3.62 AE Amitsoq gneiss from West Greenland and a 4.45 AE age of the Earth. Geol Soc Am 1975 Annual Meeting, Abstr with Programs 7:1081–1082

    Google Scholar 

  • Ganguly J, Ruiz J (1986/87) Time-temperature relation of mineral isochrons: a thermodynamic model, and illustrative examples for the Rb-Sr system. Earth Planet Sci Lett 81:333–348

    Google Scholar 

  • Ganssen G (1981) Isotopic analysis of foraminifera shells: interference from chemical treatment. Palaeogr Palaeoclimatol Palaeoecol 33:271–276

    Google Scholar 

  • Ganssen G, Sarnthein M (1983) Stable-isotope composition of foraminifers: the surface and bottom water record of coastal upwelling. In: Suess E, Thiede J (eds) Coastal Upwelling. Plenum Press, New York, pp 99–121

    Google Scholar 

  • Gariepy C, Allègre CJ, Lajoije J (1984) U-Pb systematics in single zircons from the Pontiac sediments, Abitibi greenstone belt. Can J Earth Sci 21:1296–1304

    Google Scholar 

  • Garner EL, Murphy TJ, Gramlich JW, Paulsen PJ, Barnes IL (1976) Absolute isotopic abundance ratios and the atomic weight of a reference sample of potassium. J Res US Natl Bur Stand, Sect A, 79A:713–725

    Google Scholar 

  • Garwin L (1984) Fission track dating comes of age. New Scientist 1418:21

    Google Scholar 

  • Gascoyne M (1981) A simple method of uranium extraction from carbonate groundwater and its application to 234U/238U disequilibrium studies. J Geochem Explor 14:199–207

    Google Scholar 

  • Gascoyne M, Schwarcz HP, Ford DC (1980) A palaeotemperature record for the mid-Wisconsin in Vancouver Island. Nature (Lond) 285:474–476

    Google Scholar 

  • Gascoyne M, Schwarcz HP, Ford DC (1983) Uranium-series ages of speleothem from Northwest England: correlation with Quaternary climate. Phil Trans R Soc Lond B 301:143–164

    Google Scholar 

  • Gat JR, Carmi I (1970) Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. J Geophys Res 75:3039–3048

    Google Scholar 

  • Gat J, Gonfiantini R (eds) (1981) Stable Isotope Hydrology. Deuterium and Oxygen-18 in the Water Cycle. IAEA, Vienna, Tech Rep Ser 210:337

    Google Scholar 

  • Gaudette HE, Hurley PM, Fairbairn HW, Lajmi T (1977) Source area for the Numidian flysch of Tunisia determined by U-Pb zircon ages. 21st progress report 1974–1976, MIT Geochronol Lab, pp 35-41

    Google Scholar 

  • Gebauer D, Grünenfelder M (1974) Rb-Sr whole-rock dating of late diagenetic to anchimetamorphic, Palaeozoic sediments in southern France (Montagne Noire). Contrib Mineral Petrol 47:113–130

    Google Scholar 

  • Gebauer D, Grünenfelder M (1976) U-Pb zircon and Rb-Sr whole-rock dating of low-grade metasediments. Example: Montagne Noire (Southern France). Contrib Mineral Petrol 59:13–32

    Google Scholar 

  • Gebauer D, Grünenfelder M (1978) U-Pb zircon and Rb-Sr mineral dating of eclogites and their country rocks. Example: Münchberg Gneiss Massive, NE-Bavaria. Earth Planet Sci Lett 42:35–44

    Google Scholar 

  • Gebauer D, Grünenfelder M (1979) U-Th-Pb dating of minerals. In: Jäger E, Hunziker JC (eds) Lectures in isotope geology. Springer, Berlin, Heidelberg, New York, pp 105–131

    Google Scholar 

  • Gebauer D, Bernard-Griffiths J, Grünenfelder M (1981) U-Pb zircon and monazite dating of a mafic-ultramafic complex and its country rocks. Example: Sauviat-sur-Vige, French Central Massif. Contrib Mineral Petrol 76:292–300

    Google Scholar 

  • Geiss J, Oeschger H, Schwarz U (1962) The history of cosmic radiation as revealed by isotopic changes in the meteorites and on the earth. Space Sci Rev 1:197–223

    Google Scholar 

  • Gellermann R, Gast M (1983) Ra-Rn-Datierung der Quellwässer von Bad Brambach. Z Physiother Jg 35:129–135

    Google Scholar 

  • Gellermann R, Börner I, Franke T, Fröhlich K (1988) Preparation of water samples for 32Si determination. Isotopenpraxis 24:114–117

    Google Scholar 

  • Gentner W, Zähringer J (1955) Argon-und Heliumbestimmungen in Eisenmeteoriten. Z Naturforsch 10A:498–499

    Google Scholar 

  • Gentner W, Glass BP, Storzer D, Wagner GA (1970) Fission track ages of deposition of deep-sea microtectites. Science 168:359–361

    Google Scholar 

  • Gerling EK, Iskanderova AD (1966) Isotopic composition of lead from carbonate rocks of different age. Akad Nauk SSSR Dokl 170/4:905–907

    Google Scholar 

  • Gerling EK, Shukolyukov YA (1959) Isotope composition and content of xenon in uranium minerals. Radiokhimiya 1:212–222

    Google Scholar 

  • Gerling EK, Tolstykhin IN, Shukolyukov YA, Nesmelova ZN, Azbel IY (1967) Argon isotopes and helium in natural hydrocarbon gases. Geochim Int 4:498–506

    Google Scholar 

  • Geyh MA (1967) Experience gathered in the construction of low-level counters. In: Radioactive Dating and Low-Level Techniques: 575–589. IAEA, Vienna

    Google Scholar 

  • Geyh MA (1969) Messungen der Tritium-Konzentration von Salzlaugen. Kali Steinsalz 5:208

    Google Scholar 

  • Geyh MA (1970) Zeitliche Abgrenzung von Klimaänderungen mit 14C-Daten von Kalksinter und organischen Substanzen. Beih Geol Jahrb 98:15–22

    Google Scholar 

  • Geyh MA (1972a) Basic studies in hydrology and 14C und 3H measurements. Proc 24th Int Geol Congr 11: 227–234

    Google Scholar 

  • Geyh MA (1972b) On the determination of the initial 14C content in groundwater. In: Rafter TA, Grant-Taylor T (eds) Proc 8th Int Conf Radiocarbon Dating: Wellington, New Zealand, pp B369–380

    Google Scholar 

  • Geyh MA (1979) 14C Routine dating of marine sediments. In: Berger R, Suess HE (eds) Radiocarbon Dating. Univ California Press, Los Angeles, pp 470–491

    Google Scholar 

  • Geyh MA (1980 a) Holocene sea-level history: case study of the statistical evaluation of 14C dates. Radiocarbon 22(III): 695–704

    Google Scholar 

  • Geyh MA (1980b) Einführung in die Methoden der physikalischen und chemischen Altersbestimmung. Wissenschaftliche Buchgesellschaft, Darmstadt, 276 pp

    Google Scholar 

  • Geyh MA (1980c) Hydrogeologic interpretation of the 14C content of groundwater—a status report. Fisika 12: 87–106

    Google Scholar 

  • Geyh MA (1983) Physikalische und Chemische Datierungsmethoden in der Quartärforschung. Clausthaler Tektonische Hefte 19:pp 163. Pilger, Clausthal

    Google Scholar 

  • Geyh MA, de Maret P (1982) Histogram evaluation of 14C dates applied to the first complete iron age sequence from West Central Africa. Archaeometry 24:158–163

    Google Scholar 

  • Geyh MA, Franke HW (1970) Zur Wachstumsgeschwindigkeit von Stalagmiten. Atompraxis 16:1–3

    Google Scholar 

  • Geyh MA, Hennig GJ (1986) Multiple dating of a long flowstone profile. Radiocarbon 28(2A): 503–509

    Google Scholar 

  • Geyh MA, Rohde P (1972) Weichselian chronostratigraphy, 14C dating and statistics. Proc 24th Int Geol Congr 1Z:26–36

    Google Scholar 

  • Geyh MA, Benzler JH, Roeschmann G (1971a) Problems of dating Pleistocene and Holocene soils by radiometric methods. In: Yaalon DH (ed) Nature, Origin and Dating of Palaeosols. Israel Univ Press, Jerusalem, pp 63–75

    Google Scholar 

  • Geyh MA, Merkt J, Müller H (1971b) Sediment-, Pollen-und Isotopenanalysen an jahreszeitlich geschichteten Ablagerungen im zentralen Teil des Schieinsees. Arch Hydrobiol 69: 366–399

    Google Scholar 

  • Geyh MA, Krumbein WE, Kudrass H-R (1974) Unreliable 14C dating of longstored deep-sea sediments due to bacterial activity. Mar Geol 17:45–50

    Google Scholar 

  • Geyh MA, Roeschmann G, Wijmstra TA, Middeldorp AA (1983) The unreliability of 14C dates obtained from buried sandy podzols. Radiocarbon 25:409–416

    Google Scholar 

  • Geyh MA, Backhaus G, Andres G, Rudolph J, Rath HK (1984) Isotope study on the Keuper sandstone aquifer with a leaky cover layer. In: Isotope Hydrology 1983:499–514.

    Google Scholar 

  • IAEA, Vienna Gill ED (1974) Carbon-14 and uranium/thorium check on suggested interstadial high sealevel around 30,000 BP. Search 5:211

    Google Scholar 

  • Gillespie AR, Huneke JC, Wasserburg GJ (1982) An assessment of Ar40-Ar39 dating of incompletely degassed xenoliths. J Geophys Res 87:9247–9257

    Google Scholar 

  • Gillespie R (1984) Radiocarbon User’s Handbook. Oxford Univ Comm Archaeol, Monogr 3:36. Oxonion Rewley, Oxford

    Google Scholar 

  • Gillot P-Y (1985) K-Ar Upper-Pleistocene dating. Terra Cognita 5:234

    Google Scholar 

  • Gillot P-Y, Cornette Y (1986) The Cassignol technique for potassium-argon dating, precision and accuracy: examples from the late Pleistocene to recent volcanics from Southern Italy. Chem Geol (Isot Geosci Sect) 59:205–222

    Google Scholar 

  • Glagola BG, Phillips GW, Marlow KW, Myers LT, Omohundro RJ (1984) Low level tritium detection using accelerator mass spectrometry. Nucl Instrum Methods 233(B5): 221–225

    Google Scholar 

  • Gleadow AJW (1981) Fission-track dating methods: what are the real alternatives? Nucl Tracks 5:3–14

    Google Scholar 

  • Godwin CI, Sinclair Aj (1982) Average lead isotope growth curves for shale-hosted zinc-lead deposits, Canadian Cordillera. Econ Geol 77:675–690

    Google Scholar 

  • Goedicke C (1985) TL dating: a new novel of differential dating. Nucl Tracks 10:811–816

    Google Scholar 

  • Goedicke C, Slusallek K, Kubelik M (1983) Some marginal notes on TL dating of brick structures. PACT 9:245–248

    Google Scholar 

  • Göksu HY (1978) The TL age determination of fossil human footprints. Arch Phys 10:455–462

    Google Scholar 

  • Göksu Y, Fremlin JH, Irvin HI, Fryxell R (1974) Age determination of burned flint by a thermoluminescence method. Science 183:651–654

    Google Scholar 

  • Göksu-Ögelman HY (1986) Thermoluminescent dating: a review of applications to burned flint. In: Sieveking G, Hart MB (eds) The scientific study of flint and chert. Univ Press, Cambridge, pp 263–267

    Google Scholar 

  • Göksu-Ögelman Y, Kapur S (1982) Thermoluminescence reveals weathering stages in basaltic rocks. Nature (Lond) 296:231–232

    Google Scholar 

  • Goel PS, Kohman TP (1963) Cosmic-ray exposure history of meteorites from cosmogenic Cl36. In: Radioactive Dating: 413–432. IAEA, Vienna

    Google Scholar 

  • Goldberg ED (1963) Geochronology with lead-210. In: Radioactive Dating: 121–131. IAEA, Vienna

    Google Scholar 

  • Goldberg ED, Koide M (1958) Io/Th chronology in deep-sea sediments of the Pacific. Science 128:1003

    Google Scholar 

  • Goldberg ED, Gamble E, Griffin JJ, Koide M (1977) Pollution history of Narragansett Bay as recorded in its sediments. Estuar Coast Mar Sci 5:549–561

    Google Scholar 

  • Goldich SS, Mudrey MG Jr (1972) Dilatancy model for discordant U-Pb zircon ages. In: Contributions to recent geochemistry and analytical chemistry (Vinogradov volume) Nauka, Moscow, pp 415–418

    Google Scholar 

  • Goodfriend GA (1987a) Radiocarbon anomalies in shell carbonate of land snails from semi-arid areas. Radiocarbon 29: 159–167

    Google Scholar 

  • Goodfriend GA (1987b) Evaluation of amino-acid racemization/epimerization dating using radiocarbon-dated fossil land snails. Geology 15: 698–700

    Google Scholar 

  • Goodfriend GA (1987c) Chronostratigraphic studies of sediments in the Negev Desert, using amino acid epimerization analysis of land snail shells. Q Res 28: 374–392

    Google Scholar 

  • Goodfriend GA (1988) Mid-Holocene rainfall in the Negev Desert from 13C of land snail shell organic matter. Nature 333:757–760

    Google Scholar 

  • Goodfriend GA, Hood DG (1983) Carbon isotope analysis of land snail shells: implications for carbon sources and radiocarbon dating. Radiocarbon 25(3): 810–830

    Google Scholar 

  • Goodman M, Weirs ML, Czelusniak J (1982) Molecular evolution above the species level branching pattern, rates, and mechanisms. Syst Zool 314:376–399

    Google Scholar 

  • Gottfried D, Jaffe HW, Senftle Fe (1959) Evaluation of the lead-alpha (Larsen) method for determining ages of igneous rocks. US Geol Surv Bull 1097-A

    Google Scholar 

  • Gove HE, Litherland AE, Elmore D (eds) (1987) Accelerator Mass Spectrometry. Nucl Instrum Methods Phys Res B 29(1,2): pp455. North–Holland, Amsterdam

    Google Scholar 

  • Grabczak J, Zuber A, Maloszewski P, Rozanski K, Weiss W, Sliwka I (1982) New mathematical models for the interpretation of environmental tracers in groundwaters and the combined use of tritium, C-14, Kr-85, He-3, and Neon-11 for groundwater studies. Beitr Geol Schweiz Hydrol 28(II): 395–406

    Google Scholar 

  • Graf TH, Vogt S, Bonani G, Herpers U, Signer P, Suter M, Wieler R, Wölfli W (1987) Depth dependence of 10Be and 26Al production rates in the iron meteorite Grant. Nucl Instrum Methods Phys Res B 29:262–265

    Google Scholar 

  • Grauert B (1974) U-Pb systematics in heterogeneous zircon populations from the Precambrian basement of the Maryland Piedmont. Earth Planet Sci Lett 23:238–248

    Google Scholar 

  • Grauert B, Hofmann A (1973) Effects of progressive regional metamorphism and magma formation on U-Pb systems in zircon. 3rd European Colloquim of Geochronology, Cosmochronology and Isotope Geology (ECOG III), Oxford (abstract)

    Google Scholar 

  • Grauert B, Scitz MG, Soptrajanova G (1974) Uranium and lead gain of detrital zircon studied by isotopic analyses and fission-track mapping. Earth Planet Sci Lett 21:389–399

    Google Scholar 

  • Gray J, Se Jong Song (1984) Climatic implications of natural variations of D/H ratios in tree ring cellulose. Earth Planet Sci Lett 70:129–138

    Google Scholar 

  • Green PF (1985a) Comparison of zeta calibration baselines of fission-track dating of apatite, zircon and sphene. Chem Geol Isot Geosci Sect 58: 1–22

    Google Scholar 

  • Green PF (1985b) In defence of the external detector method for fission track dating. Geol Mag 122: 73–75

    Google Scholar 

  • Green PF (1988) The relationship between track shortening and fission track age reduction in apatite: combined influences of inherent instability, annealing anisotropy, length bias and system calibration. Earth Planet Sci Lett 89:335–352

    Google Scholar 

  • Grootes PM (1978) Carbon-14 time scale extended. Comparison of chronologies. Science 200:11–15

    Google Scholar 

  • Grün R (1984) ESR dating without determination of annual dose: a first application on dating molluscs shells. Proc ESR dating and Dosimetry. IONICS, Tokyo, pp 115–123

    Google Scholar 

  • Grün R (1988) Die ESR-Altersbestimmungsmethode. Springer Berlin Heidelberg New York Tokyo, 132 pp

    Google Scholar 

  • Grün R (1989) Electron spin resonance (ESR) dating. Quatern Int. 1:65–109

    Google Scholar 

  • Grün R, de Canniere P (1984) ESR dating: problems encountered in the evaluation of the naturally accumulated dose (AD) of secondary carbonates. J Radioanal Nucl Chem Lett 85:213–226

    Google Scholar 

  • Grün R, Hentzsch B (1987) Problems encountered in ESR dating of spring-deposited travertines. 5th Specialist Seminar on TL and ESR Dating. Kings College, Cambridge 6–10 July 1987

    Google Scholar 

  • Grün R, Invernati C (1985) Uranium accumulation in teeth and its effect on ESR dating—a detailed study of mammoth tooth. Nucl Tracks 10:869–877

    Google Scholar 

  • Grün R, MacDonald PDM (1989) Non-linear fitting of TL/ESR dose-response curves. Appl Radiat Isot 40:1077–1080

    Google Scholar 

  • Grün R, Schwarcz P, Chadam J (1988) ESR dating of tooth enamel: coupled correction for U-uptake and U-series disequilibrium. Nucl Tracks Radiat Meas 14:237–241

    Google Scholar 

  • Grünenfelder M, Stern TW (1960) Das Zirkon-Alter des Bergeller Massivs. Schweiz Min Petr Mitt 40:253–259

    Google Scholar 

  • Guérin G, Valladas G (1980) Thermoluminescence dating of volcanic plagioclases. Nature (Lond) 286:697–699

    Google Scholar 

  • Guibert P, Bechtel F, Dubourg R, Schvoerer M (1985) Gamma-thermoluminescence dating (Γ-TL)-III: checking the homogeneity of the structure by γ-spectrometry. Nucl Tracks 10:655–662

    Google Scholar 

  • Guichard F, Reyss J-L, Yokoyama Y (1978) Growth rate of manganese nodule measured with 10Be and 26Al. Nature (Lond) 272:155–156

    Google Scholar 

  • Gulson BL (1977) Isotopic and geochemical studies on crustal effects in the genesis of the Woodlawn Pb-Zn-Cu deposit. Contrib Mineral Petrol 65:227–242

    Google Scholar 

  • Gulson BL, Vaasjoki M, Carr GR (1986) Geochronology in deeply weathered terrains using lead-lead isochrons. Chem Geol Isot Geosci Sec 59:273–282

    Google Scholar 

  • Gupta SK, Polach HA (1985) Radiocarbon dating practices at ANU. Handbook. ANU, Canberra, 173 pp

    Google Scholar 

  • Gurfinkel DM (1987) Comparative study of the radiocarbon dating of different bone collagen preparations. Radiocarbon 29(1): 45–52

    Google Scholar 

  • Gutierrez-Negrin L, Lopez-Martinez A, Becazar-Garcia M (1984) Application of dating for searching geothermic sources. Nucl Tracks 8:385–389

    Google Scholar 

  • Guttman J, Kronfeld J (1982) Tracing interaquifer connections in the Kefar Uriyya region (Israel), using natural uranium isotopes. J Hydrol 55:145–150

    Google Scholar 

  • Gvirtzman H, Magaritz M (1986) Investigation of water movement in the unsaturated zone under an irrigated area using environmental tritium. Water Resour Res 22:635–642

    Google Scholar 

  • Haeberli W, Schotterer U, Wagenbach D, Haeberli-Schwitter H, Bortenschlager S (1983) Accumulation characteristics on a cold, high-alpine firm saddle from a snow-pit study on Colle Gnifetti, Monte Rosa, Swiss Alps. J Glaciol 29:260–271

    Google Scholar 

  • Hänny R, Grauert B, Soptrajanova G (1975) Paleozoic migmatites affected by high-grade Tertiary metamorphism in the Central Alps (Valle Bodengo, Italy), a geochronological study. Contrib Mineral Petrol 51:173–196

    Google Scholar 

  • Hahn O, Walling E (1938) Über die Möglichkeit geologischer Altersbestimmungen rubidiumhaltiger Minerale und Gesteine. Z Anorg Allg Chem 236:78–82

    Google Scholar 

  • Hahn O, Strassman F, Mattauch J, Ewald H (1943) Geologische Altersbestimmungen mit der Strontiummethode. Chem Z 67:55–56

    Google Scholar 

  • Hainebach K, Kazanas D, Schramm DN (1978) A consistent age for the universe. Geol Surv Open-File Rep 78-701:159–162

    Google Scholar 

  • Hall CM, York D (1984) The applicability of 40Ar/39Ar dating to young volcanics. In: Mahaney WC (ed) Quaternary dating methods. Elsevier, Amsterdam, pp 67–74

    Google Scholar 

  • Hall CM, Walter RC, Westgate JA, York D (1984) Geochronology, stratigraphy, and geochemistry of Cindery Tuff in Pliocene hominid-bearing sediments of the Middle Awash, Ethiopia. Nature (Lond) 308:26–31

    Google Scholar 

  • Halliday AN (1978) 40Ar-39Ar step-heating studies of clay concentrates from Irish orebodies. Geochim Cosmochim Acta 42:1851–1858

    Google Scholar 

  • Halliday AN, Mitchell JG (1983) K-Ar ages of clay concentrates from Irish orebodies and their bearing on the timing of mineralization. Trans R Soc Edinburgh, Earth Sci 74:1–14

    Google Scholar 

  • Hamer AN, Robbins BJ (1960) A search for variations in the natural abundance of uranium-235. Geochim Cosmochim Acta 19:143–145

    Google Scholar 

  • Hamilton EI (1965) Applied Geochronology. Academic Press, London New York, 267 pp

    Google Scholar 

  • Hamilton PJ, O’Nions RK, Evensen NM (1977) Sm-Nd dating of Archaean basic and ultrabasic volcanics. Earth Planet Sci Lett 36:263–268

    Google Scholar 

  • Hamilton PJ, O’Nions RK, Evensen NM, Bridgwater D, Allaart JH (1978) SM-ND isotopic investigations of Isua supracrustals and implications for mantle evolution. Nature (Lond) 272:41–43

    Google Scholar 

  • Hammer CU (1989) Dating by physical and chemical seasonal variations and reference horizons. In: Oeschger H, Langway Jr CC (eds) The Environmental Records in Glaciers and Ice Sheets:85–98, Wiley, New York

    Google Scholar 

  • Hammer CU, Clausen HB, Dansgaard W, Gundestrup N, Jihnsen SJ, Reeh N (1978) Dating of Greenland ice cores by flow models, isotopes, volcanic debris, and continental dust. J Glac 20:3–26

    Google Scholar 

  • Hammer CU, Clausen HB, Tauber H (1986) Ice-core dating of the Pleistocene/Holocene boundary applied to a calibration of the 14C time scale. Radiocarbon 28(2A): 284–291

    Google Scholar 

  • Hammerschmidt K, Wagner GA, Wagner M (1984) Radiometrie dating on research drill core Urach III: a contribution to its geothermal history. J. Geophys 54:97–105

    Google Scholar 

  • Hampel W, Takagi J. Sakamoto K, Tanaka S (1975) Measurement of myon-induced 26Al in terrestrial silicate rock. J Geophys Res 80:3757–3760

    Google Scholar 

  • Hanson GN, Catanzaro EJ, Anderson DH (1971) U-Pb ages for sphene in a contact metamorphic zone. Earth Planet Sci Lett 12:231–237

    Google Scholar 

  • Hardy EP, Volchock HL, Livingstone HD, Burke JC (1980) Time pattern of off-site plutonium deposition from rocky flats plant by lake sediment analyses. Environ Int 4:21–30

    Google Scholar 

  • Hare PE, Mitterer RM (1967) Nonprotein amino acids in fossil shells. Carnegie Inst Wash Yearb 65:362–364

    Google Scholar 

  • Hare PE, St John PA, Engel MH (1985) Ion exchange separation of amino acids. In: Barrett GC (ed) Chemistry and Biochemistry of the Amino Acids. Chapman and Hall, London, pp 415–425

    Google Scholar 

  • Harkness DD, Harrison AF, Bacon B (1986) The temporal distribution of ‘bomb’ 14C in a fossil soil. Radiocarbon 28(2A): 328–337

    Google Scholar 

  • Harland WB, Smith AG, Wilcock B (eds) (1964) The Phanerozoic time-scale. Quarterly J Geol Soc London 120:458pp

    Google Scholar 

  • Harland WB, Cox AV, Llewellyn PG, Pickton CAG, Smith AG, Walters R (1982) A Geologic Time Scale. Cambridge Univ Press, Cambridge, 131pp

    Google Scholar 

  • Harmon RS, Schwarcz HP (1981) Changes of 2H and 18O enrichment of meteoric water and Pleistocene glaciation. Nature (Lond) 290:125–128

    Google Scholar 

  • Harmon RS, Thompson P, Schwarcz HP, Ford DC (1978) Late Pleistocene paleoclimates of North America as inferred from stable isotope studies from speleothems. Q. Res 9:54–70

    Google Scholar 

  • Harmon RS, Mitterer RM, Kriausakul N, Land LS, Schwarcz HP, Garrett P, Larson GJ, Vacher HL, Rowe M (1983) U-series and amino-acid racemization geochronology of Bermuda: implications for eustatic sea-level fluctuation over the past 250,000 years. Palaeogeogr Palaeoclimatol Palaeoecol 44:41–70

    Google Scholar 

  • Harper CT (1970) Graphical solutions to the problem of radiogenic argon-40 loss from metamorphic minerals. Eclogae Geol Helv 63:119–140

    Google Scholar 

  • Harris WB (1982) Rubidium-strontium glaucony ages, southeastern Atlantic Coastal Plain, USA. In: Odin GS (ed) Numerical dating in stratigraphy, part I. Wiley, Chichester, pp 593–606

    Google Scholar 

  • Harrison TM (1981) Diffusion of 40Ar in hornblende. Contrib Mineral Petrol 78:324–331

    Google Scholar 

  • Harrison TM, Bé K (1983) 40Ar/39Ar age spectrum analysis of detrital microclines from the southern San Joaquin Basin, California: an approach to determining the thermal evolution of sedimentary basins. Earth Planet Sci Lett 64:244–256

    Google Scholar 

  • Harrison TM, McDougall I (1980) Investigations of an intrusive contact, northwest Nelson, New Zealand.-II. Diffusion of radiogenic and excess 40Ar in hornblende revealed by 40Ar/39Ar age spectrum analysis. Geochim Cosmochim Acta 44:2005–2020

    Google Scholar 

  • Hart SR (1964) The petrology and isotopic-mineral age relations of a contact zone in the Front Range, Colorado. J Geol 72:493–525

    Google Scholar 

  • Hart SR, Davis GL, Steiger RH, Tilton GR (1968) A comparison of the isotopic mineral age variations and petrologic changes induced by contact metamorphism. In: Hamilton EI, Farquhar RM (eds) Radiometric dating for geologists. Interscience, New York, pp 73–110

    Google Scholar 

  • Hart SR, Shimizu N, Sverjensky DA (1981) Lead isotope zoning in galena: An ion microprobe study of a galena crystal from the Buick mine, southeast Missouri. Econ Geol 76:1873–1876

    Google Scholar 

  • Hasegawa M, Kishino H, Yano Ta (1985) Dating of human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Google Scholar 

  • Haskell EH (ed) (1983) Beta dose-rate determination: preliminary results from an interlaboratory comparison of techniques. PACT 9:77–85

    Google Scholar 

  • Haskin LA, Wildeman TR, Frey FA, Collins KA, Keedy CR, Haskin MA (1966) Rare earth in sediments. J Geophys Res 71:6091–6105

    Google Scholar 

  • Hassan AA, Termine JD, Haynes CV Jr (1977) Mineralogical studies on bone apatite and their implications for radiocarbon dating. Radiocarbon 19(III): 364–374

    Google Scholar 

  • Hawkesworth CJ, Vollmer R (1979) Crustal contamination versus enriched mantle: 143Nd/144Nd and 87Sr/86Sr evidence from the Italian Volcanics. Contrib Mineral Petrol 69:151–165

    Google Scholar 

  • Hayatsu A, Carmichael CM (1970) K-Ar isochron method and initial argon ratios. Earth Planet Sci Lett 8:71–76

    Google Scholar 

  • Hays JD, Imbrie, J, Shackleton NJ (1976) Variations in the earth’s orbit: pacemaker of the ice ages. Science 194:1121–1132

    Google Scholar 

  • Hearty PJ, Aharon P (1988) Amino acid chronostratigraphy of late Quaternary coral reefs: Huon Peninsula, New Guinea, and the Great Barriers Reef, Australia. Geology 16:579–583

    Google Scholar 

  • Heath MJ (1981) The use of radon in streams as a guide to uranium distribution in south-west England. in: Proc USSHER Soc 5(2): 245

    Google Scholar 

  • Heaton XHE (1984) Rates and sources of 4He accumulation in groundwater. Hydrol Sci J 29:29–47

    Google Scholar 

  • Hebeda EH, Freundel M, Schultz L (1985) Uranium and spontaneous fissiogenic xenon and krypton systematics of zircons from the Botnavatn igneous complex, SW Norway. Terra Cognita 5:280

    Google Scholar 

  • Hedges REM (1981) Radiocarbon dating with an accelerator: Review and preview. Archaeometry 23(1): 3–18

    Google Scholar 

  • Hedges REM, Law IA (1989) The radiocarbon dating of bone. Appl Geochem 4:249–253

    Google Scholar 

  • Heinemeier J, Hornshøj P, Nielsen HL, Rud N, Thomsen MS (1987) Accelerator mass spectrometry applied to 22,24Na, 31,32Si, and 14C. Nucl Instrum Methods Phys Res B29:110–123

    Google Scholar 

  • Heizer RF, Cook SF (1952) Fluorine and other chemical tests of some North American Human and fossil bones. Am J Phys Anthropol 10:289–303

    Google Scholar 

  • Helfman PM, Bada JL (1975) Aspartic acid racemization in tooth enamel from living humans. Proc Nat Acad Sci USA 72:2891–2894

    Google Scholar 

  • Helfman PM, Bada JL (1976) Aspartic acid racemisation in dentine as a measure of ageing. Nature (Lond) 262:279–281

    Google Scholar 

  • Hellman KN, Lippolt HJ (1981) Calibration of the Middle Triassic time scale by conventional K-Ar and 40Ar/39Ar dating of alkali feldspars. J Geophys. 50:73–88

    Google Scholar 

  • Hemond C, Condomines M (1985) On the reliability of the 23OTh-234U dating method applied to young volcanic rocks-discussion. J Volcanol Geotherm Res 26:365–376

    Google Scholar 

  • Henderson P (ed) (1984) Rare earth element geochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Hendy CH (1971) The isotope chemistry of speleothems I. Geochim Cosmochim Acta 35:801–824

    Google Scholar 

  • Hennig GJ, Grün R (1983) ESR dating in Quaternary geology. Q Sci Rev 2:157–238

    Google Scholar 

  • Hennig GJ, Grün R, Brunnacker K (1983) Speleothems, travertines and paleoclimates. Q. Res 20:1–29

    Google Scholar 

  • Hennig GJ, Geyh MA, Grün R (1985) The first inter-laboratory ESR comparison project phase II: evaluation of equivalent doses (ED) or calcites. Nucl Tracks 10:945–952

    Google Scholar 

  • Henning W, Bell WA, Billquist PJ, Glagola BG, Kutschera W, Liu Z, Lucas HF, Paul M, Rehm KE, Yntema JL (1987) Calcium-41 concentration in terrestrial materials: prospects for dating Pleistocene samples. Science 236:725–727

    Google Scholar 

  • Henzel N, Strebel O (1967) Modelluntersuchungen über die Tiefenverlagerung von Fallout in verschiedenen Böden. Z Geophys 33:33–47

    Google Scholar 

  • Herpers U, Englert P (1983) 26Al production rates and 53Mn/26Al production rate ratios in non-Antarctic chondrites and their application to bombardment histories. J Geophys Res 88Suppl: B 312–318

    Google Scholar 

  • Herpers U, Herr W, Wölfle R (1967) Determination of cosmic-ray produced nuclides 53Mn, 45Sc and 26Al in meteorites by neutron activation and gamma coincidence spectroscopy. In: Radioactive Dating and Methods of Low-Level Counting: 199–205. IAEA, Vienna

    Google Scholar 

  • Herr W, Merz E (1955) Eine neue Methode zur Altersbestimmung von Rhenium-haltigen Mineralen mittels Neutronenaktivierung. Z Naturforsch 10a:613–615

    Google Scholar 

  • Herr W, Merz E, Eberhardt P, Signer P (1958) Zur Bestimmung der β-Halbwertszeit von 176Lu durch den Nachweis von radiogenem 176Hf. Z Naturforschung 13a:268–283

    Google Scholar 

  • Herr W, Hoffmeister W, Langhoff J (1960) Die Bestimmung von Rhenium und Osmium in Eisenmeteoriten durch Neutronenaktivierung. Z Naturforsch 15a:99–102

    Google Scholar 

  • Herr W, Wölfe R, Eberhardt P, Koppe E (1967) Development and recent application of the Re/Osdating method. In: Radioactive dating and methods of low-level counting: 499–508. IAEA, Vienna

    Google Scholar 

  • Herr W, Herpers U, Englert P (1981) 53Mn and 26Al in observed chondrite falls with high exposure ages. Meteoritics 16:324–325

    Google Scholar 

  • Herrman AG, Potts MJ, Knake D (1974) Geochemistry of the rare earth elements in spilites from the oceanic and continental crust. Contrib Mineral Petrol 44:1–16

    Google Scholar 

  • Herron MM (1982) Glaciochemical dating techniques. In: Currie LA (ed) Nuclear and Chemical Dating Techniques. ACS, Washington DC, ACS Symp Ser 176:303–318

    Google Scholar 

  • Herterich K, Sarnthein M (1984) Brunhes time scale: tuning by rates of calcium carbonate dissolution and cross spectral analyses with solar insolation. In: Berger A et al. (eds) Milankovitch and Climate, Part I. Reidel, Amsterdam, pp 447–466

    Google Scholar 

  • Herweijer JC, van Luiju GA, Appelo CAJ (1985) Calibration of a mass transport model using environmental tritium. J Hydrol 78:1–17

    Google Scholar 

  • Hess JC, Lippolt HJ, Wirth R (1987) Interpretation of 40Ar/39Ar spectra of biotites: evidence from hydrothermal degassing experiments and TEM studies. Chem Geol Isot Geosci Sec 66:137–149

    Google Scholar 

  • Heumann KG, Kubassek E, Schwabenbauer W, Stadler I (1979) Analytisches Verfahren zur K/Ca-Altersbestimmung an geologischen Proben. Fresenius Z Anal Chem 297:35–43

    Google Scholar 

  • Heusser G, Ouyang Z, Kirsten T, Herpers U, Englert P (1985) Conditions of the cosmic ray exposure of the Jilin chondrite. Earth Planet Sci Lett 72:263–272

    Google Scholar 

  • Heye D (1975) Wachstumsverhältnisse von Manganknollen. Geol Jahrb E 5:3–22

    Google Scholar 

  • Heymann D (1977) The Inert Gases. Phys Chem Earth 10:45–55

    Google Scholar 

  • Hickman MH, Glassley WE (1984) The role of metamorphic fluid transport in the Rb-Sr isotopic resetting of shear zones: evidence from Nordre Stromfjord, West Greenland. Contrib Mineral Petrol 87:265–281

    Google Scholar 

  • Hillaire-Marcel C, Carro O, Casanova J (1986) 14C and U/Th dating of Pleistocene and Holocene stromatolites from East African palaeolakes. Q Res 25:312–329

    Google Scholar 

  • Hille P (1979) An open system model for uranium series dating. Earth Planet Sci Lett 42:138–142

    Google Scholar 

  • Hille P, Mais K, Rabeder G, Vavra N, Wild E (1981) Über Aminosäuren-und Stickstoff/Fluor-Datierung fossiler Knochen aus österreichischen Höhlen. Höhle 32:74–91

    Google Scholar 

  • Hillman GC, Robins GV, Oduwole D, Sales KD, McNeil DAC (1983) Determination of thermal histories of archeological cereal grains with electron spin resonance spectroscopy. Science 222:1235–1236

    Google Scholar 

  • Hinthorne JR, Andersen CA, Conrad RL, Lovering JF (1979) Single-grain 207Pb/206Pb and U/Pb age determinations with a 10-μm spatial resolution using the ion microprobe mass analyzer (IMMA). Chem Geol 25:271–303

    Google Scholar 

  • Hirose K, Sugimura Y (1984) Excess 288Th in the airborne dust: an indicator of continental dust from East Asian deserts. Earth Planet Sci Lett 70:110–114

    Google Scholar 

  • Hochman HBM, Ypma PJM (1984) Thermoluminescence as a tool in uranium exploration. J Geochem Explor 22:313–331

    Google Scholar 

  • Hofmann AW (1979) Rb-Sr dating of thin slabs: an imperfect method to determine the age of metamorphism. In: Jäger E, Hunziker JC (eds) Lectures in isotope geology. Springer, Berlin Heidelberg New York, pp 27–29

    Google Scholar 

  • Hofmann AW, Grauert B (1973) Effect of regional metamorphism on whole-rock Rb-Sr systems in sediments. Carnegie Inst Washington Yearb 72:299–302

    Google Scholar 

  • Hofmann A, Köhler H (1973) Whole rock Rb-Sr ages of anatectic gneisses from the Schwarzwald, SW Germany. N Jahrb Mineral Abh 119:163–187

    Google Scholar 

  • Hofmann AW, Mahoney JW, Giletti BJ (1974) K-Ar and Rb-Sr data on detrital and postdepositional history of Pennsylvanian clay from Ohio and Pennsylvania. Geol Soc Am Bull 85:639–644

    Google Scholar 

  • Hofmann A, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett 57:421–436

    Google Scholar 

  • Hohenberg CM (1969) Radioisotopes and the history of nucleosynthesis in the galaxy. Science 166:212–215

    Google Scholar 

  • Hohnes A (1911) The association of lead with uranium in rock minerals and its application to the measurement of geological time. Proc Soc A 85:248–256

    Google Scholar 

  • Holmes A (1932) The origin of igneous rocks. Geol Mag 69:543–558

    Google Scholar 

  • Holmes A (1937) The age of the Earth. Nelson Classics, London

    Google Scholar 

  • Holmes A (1946) An estimate of the age of the Earth. Nature (Lond) 157:680 pp

    Google Scholar 

  • Holmes A (1947) The construction of a geological time scale. Trans Geol Soc Glasgow 21:117–152

    Google Scholar 

  • Holmes A (1949) Lead isotopes and the age of the Earth. Nature (Lond) 163:453–456

    Google Scholar 

  • Holmes A (1959) A revised geological time scale. Trans Edinbourgh Geol Soc 17:183–216

    Google Scholar 

  • Hohnes CW, Martin EA (1978) 226Ra chronology of Gulf of Mexico slope sediments. Geol Surv Open-File Rep 48-701:184–187

    Google Scholar 

  • Holser WT (1977) Catastrophic chemical events in the history of the ocean. Nature (Lond) 267:403–408

    Google Scholar 

  • Holser WT, Kaplan IR (1966) Isotope geochemistry of sedimentary sulfates. Chem Geol 1:93–135

    Google Scholar 

  • Holser WT, Magaritz M, Wright J (1986) Chemical and isotopic variations in the world ocean during phanerozoic time. Sciences, vol 8. In: Walliser O (ed) Global Bio-Events. Lecture Notes in Earth Sciences, vol, 8 Springer, Berlin Heidelberg New York Tokyo, pp 63–74

    Google Scholar 

  • Honda M, Kurita K, Hamano Y, Ozima M (1982) Experimental studies of He and Ar degassing during rock fracturing. Earth Planet Sci Lett 59:429–436

    Google Scholar 

  • Hoppes DD (1984) Basic radionuclide measurements at the U.S. National Bureau of Standards. Environ Int 10:99–107

    Google Scholar 

  • Houtermans FG (1946) The isotope ratios in natural lead and the age of uranium. Naturwissenschaften 33:185–186

    Google Scholar 

  • Houtermans FG (1960) Die Blei-Methoden der geologischen Altersbestimmung. Geol Rundsch 49:168–196

    Google Scholar 

  • Houtermans FG, Liener A (1966) Thermoluminescence of meteorites. J Geophys Res 71:3387–3396

    Google Scholar 

  • Hsü KJ (1980) A scenario for the terminal Cretaceous event. Init. Reports DSDP 73:755–763

    Google Scholar 

  • Huang WH, Walker RM (1967) Fossil alpha-particle recoil tracks; a new method of age determination. Science 155:1103–1106

    Google Scholar 

  • Huang WH, Maurette M, Walker RM (1967) Observation of fossild-particle recoil tracks and their implications for dating measurements. In: Radioactive Dating and Methods of Low-level Counting: 415–429. IAEA, Vienna

    Google Scholar 

  • Hudson B, Hohenberg CM, Kennedy BM, Podosek FA (1982) 244Pu in the early solar system. In: Lunar and planetary science XIII. Lunar Planet Inst, Houston, pp 346–347

    Google Scholar 

  • Hübner H, Kowski P, Hermichen W-D, Richter W, Schütze H (1979) Regional and temporal variations of deuterium in the precipitation and atmospheric moisture of Central Europe. In: Isotope Hydrology 1978 I: 289–305. IAEA, Vienna

    Google Scholar 

  • Hütt G, Jaek I (1989a) Infrared photoluminescence (PL) dating of sediments: modification of the physical model. Equipment and some dating results. In: Synopsis from a workshop on Long and Short Range Limits in Luminescence Dating. Occas Paper 9: 18–22; Research Lab Archaeology and History of Art, Oxford University, Oxford

    Google Scholar 

  • Hütt G, Jeck J (1989b) Dating accuracy from laboratory reconstruction of paleodose. Appl Radiat Isot 40: 1057–1061

    Google Scholar 

  • Hütt G, Jaek I, Tchonka J (1988) Optical dating: K feldspars optical response stimulation spectra. Quat Sci Rev 7(3/4): 381–385

    Google Scholar 

  • Hughes MK, Kelly PM, Pilcher JR, La Marche VC J (1982) Climate from tree rings. Univ Press, Cambridge, 223 pp

    Google Scholar 

  • Huntley DJ (1985) On the zeroing of the thermoluminescence of sediments. Phys Chem Mineral 12:122–127

    Google Scholar 

  • Huntley DJ, Johnson HP (1976) Thermoluminescence as a potential means of dating siliceous ocean sediments. Can J Earth Sci 13:593–596

    Google Scholar 

  • Huntley DJ, Godfrey-Smith DI, Thewalt MLW (1985) Optical dating of sediments. Nature (Lond) 313:105–107

    Google Scholar 

  • Hunziker JC (1979) Potassium Argon Dating. In: Jäger E, Hunziker JC (eds) Lectures in isotope geology: Springer, Berlin Heidelberg New York, pp 52–76

    Google Scholar 

  • Hurford AJ, Green PF (1982) A user’s guide to fission track dating calibration. Earth Planet Sci Lett 59:343–354

    Google Scholar 

  • Hurford AJ, Green PF (1983) The zeta age calibration of fission-track dating. Isot Geosci 1:285–317

    Google Scholar 

  • Hurford AJ, Jäger E, Ten Cate JAM (1986) Dating Young Sediments. COOP Tech Secr, (Proc Workshop Beijing, China, Sept 1985), 393 pp

    Google Scholar 

  • Hurst GS, Kramer SD, Lehmann BE (1982) Resonance ionization spectroscopy for low-level counting. In: Currie LA (ed) Nuclear and Chemical Dating. ACS, Washington DC, ACS Symp Ser No 176:149–158

    Google Scholar 

  • Hurst GS, Payne HG, Kramer SD, Chen CH, Phillips RC, Allman SL, Alton GD, Dabbs JWT, Willis RD, Lehmann BE (1985) Method for counting noble gas atoms with isotopic selectivity. Rep Pros Phys 48:1333–1370

    Google Scholar 

  • Hussain N, Krishnaswami S (1980) U-238 series radioactive disequilibrium in groundwaters: implications to the origin of excess U-234 and fate of reactive pollutants. Geochim Cosmochim Acta 44:1287–1291

    Google Scholar 

  • Hwang FSJ (1970) Thermoluminescence dating applied to vulcanic lava. Nature (Lond) 227:940–941

    Google Scholar 

  • Hwang FSJ, Fremlin JH (1970) A new technique using thermally stimulated current. Archaeometry 12:67–71

    Google Scholar 

  • IAEA (1969 ‱1986) Environmental Isotope Data. World Survey of Isotope Concentrations in Precipitation. IAEA Tech Rep Ser No 69, 117, 129, 149, 165, 192, 206, 226, 264. IAEA, Vienna

    Google Scholar 

  • IAEA (1979) Behaviour of Tritium in the Environment. IAEA, Vienna, 711 pp

    Google Scholar 

  • IAEA (1981a) Methods of Low-Level Counting and Spectrometry. IAEA, Vienna, 557 pp

    Google Scholar 

  • IAEA (1981b) Migration in the terrestrial environment of long-lived radionuclides from nuclear fuel cycle. IAEA, Vienna

    Google Scholar 

  • IAEA (1983) Guidebook on Nuclear Techniques in Hydrology. Tech Rep Ser 91:456 pp. IAEA, Vienna

    Google Scholar 

  • IAEA (1987) Studies on sulfur isotope variations in nature. IAEA Panel proc Ser, IAEA, Vienna, 124pp

    Google Scholar 

  • Ikeya M (1982a) A model of linear uranium accumulation for ESR age of Heidelberg (Mauer) und Tautavel Bones. Jp J Appl Phys 21: L690–692

    Google Scholar 

  • Ikeya M (1982b) Electron-spin resonance of petrified woods for geological age assessment. Jpn J Appl Phys 20: L28–L30

    Google Scholar 

  • Ikeya M (1983a) Electron spin resonance (ESR) dating in archaeology and geology. JEOL News 19A:26–30

    Google Scholar 

  • Ikeya M (1983b) ESR studies of geothermal boring cores at Hachobara power station. Jpn J Appl Phys 22: L763–L765

    Google Scholar 

  • Ikeya M (1984) Age limitations of ESR dating of carbonate fossils. Naturwissenschaften 71:421–423

    Google Scholar 

  • Ikeya M (1985) ESR ages of bones on paleo-anthropology: uranium and fluorine accumulation. IInt Symp ESR Dating. Yamagoshi, Sept 1985

    Google Scholar 

  • Ikeya M (1988) Dating and radiation dosimetry with electron spin resonance. Magn Reson Rev 13:91–134

    Google Scholar 

  • Ikeya M, Miki T (1980a) Electron spin resonance dating of animal and human bones. Science 207: 977–979

    Google Scholar 

  • Ikeya M, Miki T (1980b) A new dating method with a digital ESR. Naturwissenschaften 67: 191

    Google Scholar 

  • Ikeya M, Miki T (1980c) Present status of ESR dating: reply to Nambi’s comment. Jpn J Appl Phys 19: 1809–1810

    Google Scholar 

  • Ikeya M, Miki T (eds) (1985a) ESR dating and Dosimetry. Ionics, Tokyo, 536 pp

    Google Scholar 

  • Ikeya M, Miki T (1985b) ESR dating of organic materials: from potatochips to a dead body. Nucl Tracks 10: 909–912

    Google Scholar 

  • Ikeya M, Ohmura K (1983) Comparison of ESR ages of corals from marine terraces with 14C and 23OTh/234U ages. Earth Planet Sci Lett 65:34–38

    Google Scholar 

  • Ikeya M, Ohmura K (1984) ESR age of Pleistocene shells measured by radiation assessment. Geochem J 18:11–17

    Google Scholar 

  • Ikeya M, Miki T, Tanaka K, Sakuramoto Y, Ohmura K (1983) ESR dating of faults at Rokko and Atotsugawa. PACT 9:411–419

    Google Scholar 

  • Ikeya M, Devine SD, Whitehead NE, Hedenquist JW (1986) Detection of methane in geothermic quartz by ESR. Chem Geol 56:185–192

    Google Scholar 

  • Ikeya M, Kai A, Bishoff J (1987) ESR dating of lake sediments. In: Proc 5th Specialist Seminar on TL and ESR Dating. Kings College, Cambridge, July 6–10, 1977

    Google Scholar 

  • Imamura M, Matsuda H, Horie K, Honda M (1969) Applications of neutron activation method for 53Mn in meteoritic iron. Earth Planet Sci Lett 6:165–172

    Google Scholar 

  • Imamura M, Finkel RC, Wahlen M (1973) Depth profile of 53Mn in lunar surface, Earth Planet Sci Lett 20:107–112

    Google Scholar 

  • Imbrie J, Imbrie JZ (1980) Modeling the climatic response to orbital variations. Science 207:943–953

    Google Scholar 

  • Imbrie J, Hays JD, Martinson DG, McIntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton NJ (1984) The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18 record. In: Berger A, Imbrie J, Hays J, Kukla G. Saltzman B (eds) Milankovitch and climate, Part I. Reidel, Dordrecht Boston Lancaster, pp 269–305

    Google Scholar 

  • International Study Group (1982) An inter-laboratory comparison of radiocarbon measurements in tree rings. Nature (Lond) 298:619–623

    Google Scholar 

  • Ivanovich M, Harmon RS (eds) (1982) Uranium Series Disequilibrium. Applications to Environmental Problems. Clarendon, Oxford, 571 pp

    Google Scholar 

  • Ivanovich M, Ireland P (1984) Measurement of uranium series disequilibrium in the case-hardened Aymamon limestone of Puerto Rico. Z Geomorph NF 28:305–319

    Google Scholar 

  • Ivanovich M, Vita-Finzi C, Hennig GJ (1983) Uranium-series dating of molluscs of uplifted Holocene beaches in the Persian Gulf. Nature (Lond) 302:408–410

    Google Scholar 

  • Ivanovich M, Ku T-L, Harmon RS, Smart PL (1984) Uranium series intercomparison project (USIP). Nucl Instrum Methods Phys Res 223:466–471

    Google Scholar 

  • Jacobs JA (1984) What triggers reversals of the earth’s magnetic field? Nature (Lond) 309:115

    Google Scholar 

  • Jacobsen SB, Wasserburg GJ (1980) Sm-Nd evolution of chondrites. Earth Planet Sci Lett 50:139–155

    Google Scholar 

  • Jacobsen SB, Wasserburg GH (1984) Sm-Nd isotopic evolution of chondrites and achondrites, II. Earth Planet Sci Lett 67:137–150

    Google Scholar 

  • Jacobsen SB, Quick JE, Wasserburg GJ (1984) A Nd and Sr isotopic study of the Trinity peridotite; implications for mantle evolution. Earth Planet Sci Lett 68:361–378

    Google Scholar 

  • Jäger E (1979) The Rb-Sr method. In: Jäger E, Hunziker JC (eds) Lectures in isotope geology. Springer, Berlin Heidelberg New York, pp 13–26

    Google Scholar 

  • Jäger E, Hunziker JC (1979) Lectures in Isotope Geology. Springer, Berlin Heidelberg New York, 329 pp

    Google Scholar 

  • Jäger E, Ji CW, Hurford AJ, Xin LR, Hunziker JC, Ming LD (1985) BB-6: A Quaternary age standard for K-Ar dating. Chem Geol Isot Geosci Sect 52:275–279

    Google Scholar 

  • Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Phys Rev C 4:1889–1906

    Google Scholar 

  • Jahn B-M, Chen PY, Yen TP (1976) Rb-Sr ages of granitic rocks in southeastern China and their tectonic significance. Geol Soc Am Bull 86:763–776

    Google Scholar 

  • Jahn B-M, Vidal P, Tilton GR (1980) Archean mantle heterogeneity: evidence from chemical and isotopic abundances in Archean igneous rocks. Phil Trans R Soc Lond A297:353–364

    Google Scholar 

  • Jahn B-M, Gruau G, Glickson AY (1982) Komatiites of the Onverwacht Group, S. Africa: REE geochemistry, Sm/Nd age and mantle evolution. Contrib Mineral Petrol 80:25–40

    Google Scholar 

  • Jansen E (1989) The use of stable oxygen and carbon isotope stratigraphy as a dating tool. Quatern Int 1:151–161

    Google Scholar 

  • Javoy M (1977) Stable isotopes and geothermometry. J Geol Soc Lond 133:609–636

    Google Scholar 

  • Jenkins WJ (1980) Tritium and 3He in the Sargasso Sea. J Mar Res 38:533–569

    Google Scholar 

  • Jenkins WJ, Rhines PB (1980) Tritium in the deep North Atlantic Ocean. Nature (Lond) 286:877–880

    Google Scholar 

  • Jenkins WJ, Lott DE, Pratt MW, Boudreau RD (1983) Anthropogenic tritium in South Atlantic bottom water. Nature (Lond) 305:45–46

    Google Scholar 

  • Jessberger EK, Ostertag R (1982) Shock-effects on the K-Ar system of plagioclase feldspar and the age of anorthosite inclusions from North-Eastern Minnesota. Geochim Cosmochim Acta 46:1465–1471

    Google Scholar 

  • Johnsen SJ (1977) Stable isotope homogenization of polar firn and ice. In: Rodda JC (ed) Isotope and impurities in snow and ice. IAHS Publ 118, Grenoble, pp 210–219

    Google Scholar 

  • Johnsen SJ, Dansgaard W, Clausen HB, Langway CC Jr (1972) Oxygen isotope profiles through the Antarctic and Greenland ice sheets. Nature (Lond) 235:429–434

    Google Scholar 

  • Johnson RA, Stipp JJ, Tamers MA, Bonani G, Suter M, Wölfli W (1986) Archaeologic sherd dating: Comparison of thermoluminescence dates with radiocarbon dates by beta counting and accelerator techniques. Radiocarbon 28(2A): 719–725

    Google Scholar 

  • Johnson WM, Maxwell JA (1981) Rock and mineral analysis. 2nd edn. Wiley, New York

    Google Scholar 

  • Joly J (1907) Pleochroic halos. Phil Mag 13:381–383

    Google Scholar 

  • Joly J (1908) The radioactivity of sea-water. Phil Mag J Sci Lond 6:385–393

    Google Scholar 

  • Jones JH (1982) The geochemical coherence of Pu and Nd and the 244Pu/238U ratio of the early solar system. Geochim Cosmochim Acta 46:1793–1804

    Google Scholar 

  • Joshi SR (1987) Nondestructive determination of lead-210 and radium-226 in sediments by direct photon analysis. J Radioanal Nucl Chem 116:169–182

    Google Scholar 

  • Jost DT, Marti, K, Sutter E (1981) Pu-Nd-Xe Dating: Sytematics in 244Pu fission and REE spallation components. Meteoritics 16:334

    Google Scholar 

  • Jouzel J, Merlivat L(1981) Low-level tritium measurements in water: a complete system including liquid scintillation, gas counting and electrolysis. In: Methods of Low-level Counting and Spectrometry: 325–334. IAEA, Vienna

    Google Scholar 

  • Jouzel J, Merlivat L, Lorius C (1982) Deuterium excess in an east Antarctic ice core suggests higher relative humidity at the ocean surface during the last glacial maximum. Nature (Lond) 299:688–691

    Google Scholar 

  • Julg A, Lafont R, Perinet G (1987) Mechanisms of collagen racemization in fossil bones: application to absolute dating. Q Sci Rev 6:25–28

    Google Scholar 

  • Kadlec RH, Robbins JA (1984) Sedimentation and sediment accretion in Michigan coastal wetlands (U.S.A.). Chem Geol 44:119–150

    Google Scholar 

  • Kaipa PL, Haskell EH, Kenner GH (1988) Beta dose attenuation and calculations of effective grain size in brick samples. Nucl Tracks Radiat Meas 14:215–217

    Google Scholar 

  • Kamen MA (1963) Early history of carbon-14. Science 140:584–590

    Google Scholar 

  • Kaneoka I (1972) The effect of hydration on the K/Ar ages of volcanic rocks. Earth Planet Sci Lett 14:216–220

    Google Scholar 

  • Kaneoka I, Aramaki S, Tonouchi S (1982) K-Ar ages of a basanitoid lava flow of Nanzaki Volcano and underlying Miocene andesites from the Irozaki area, Izu Peninsula, central Japan. J Geol Soc Jpn 88:919–922.

    Google Scholar 

  • Kapusta YS, Makeyev AF, Yakovleva SS (1983) Uranium-xenon geochronometry based on the crystalline material in zircon. Geochem Int 20/4:112–117

    Google Scholar 

  • Karakostanoglou I, Schwarcz HP (1983) ESR isochron dating. PACT 9:391–398

    Google Scholar 

  • Kasanevich ER (1968) The interpretation of lead isotopes and their geological significance. In: Hamilton EI, Farquhar RM (eds) Radiometric dating for geologists. Interscience, New York

    Google Scholar 

  • Katz BJ, Harrison CGA, Man EH (1983) Geothermal and other effects on amino-acid racemization in selected deep-sea drilling project cores. Org Chem 5:151–156

    Google Scholar 

  • Katzenberger O (1989) Experimente zu Grundlagen der ESR-Datierung von Molluskenschalen. Sonderveroeffentlichungen des Geologischen Instituts der Universität zu Köln 72:71 pp

    Google Scholar 

  • Katzenberger O, Willems N (1987) Interferences encountered in the determination of AD of mollusc samples. In: Proc 5th Specialist Seminar on TL and ESR Dating. Kings College, Oxford, July 6–10, 1987

    Google Scholar 

  • Kaufhold J, Herr W (1967) Influence of experimental factors on dating natural and man-made glasses by the fission track method. In: Radioactive Dating and Methods of Low-Level Counting: 403–411. IAEA, Vienna

    Google Scholar 

  • Kaufman A (1986) The distribution of 23OTh/234U ages in corals and the number of last interglacial high-sea stands. Q Res 25:55–62

    Google Scholar 

  • Kaufman A, Broeeker WS (1965) Comparison of Th230 and C14 ages for carbonate materials from Lakes Lahontan and Bonneville. J Geophys Res 70:4039–4054

    Google Scholar 

  • Kaufman A, Broecker WS, Ku T-L, Thurber DL (1971) The status of U-series methods of mollusk dating. Geochim Cosmochim Acta 35:1155–1183

    Google Scholar 

  • Kaufman S, Libby WF (1954) The natural distribution of tritium. Phys Rev 93:1337–1344

    Google Scholar 

  • Keevil NB (1939) The calculation of geological age. Am J Sci 237:195–214

    Google Scholar 

  • Keir RS (1983) Reduction of thermohaline circulation during deglaciation: the effect on atmospheric radiocarbon and CO2 Earth Planet Sci Lett 64:445–456

    Google Scholar 

  • Keir RS (1984) Recent increase in Pacific CaCO3 dissolution: a mechanism for generating old 14C ages. Mar Geol 59:227–250

    Google Scholar 

  • Keisch B, Feller RL, Levine AS, Edwards RR (1967) Dating and authenticating works of art by measurement of natural alpha emitters. Science 155:1238–1242

    Google Scholar 

  • Kelly WR, Wasserburg GJ (1978) Evidence for the existence of 107Pd in the early solar system. Geophys Res Lett 5:1079–1082

    Google Scholar 

  • Kennet JP (ed) (1980) Magnetic stratigraphy of sediments. Dowden, Hutchinson and RossStroudsburg, Penn, 448 pp (Benchmark papers in Geology Ser vol 54)

    Google Scholar 

  • Kigoshi K (1967) Ionium dating of igneous rocks. Science 156:932–934

    Google Scholar 

  • Kim KH, Burnett WC (1983) γ-Ray spectrometric determination of uranium-series nuclides in marine phosphorites. Anal Chem 55:1796–1800

    Google Scholar 

  • Kim KH, Burnett WC (1985) 226Ra in phosphate nodules from Peru/Chile seafloor. Geochim Cosmochim Acta 49:1073–1081

    Google Scholar 

  • Kimber RWL, Griffing CW (1987) Further evidence of the complexity of the racemization process in fossil shells with implications for amino acid racemization dating. Geochim Cosmochim Acta 51:829–846

    Google Scholar 

  • Kimber RWL, Griffin CW, Milnes AR (1986) Amino acid racemization dating: evidence of apparent reversal in aspartic acid racemization with time in shells of ostrea. Geochim Cosmochim Acta 50:1159–1161

    Google Scholar 

  • King JW, Banerjee SK, Marvin J, Lund S (1983) Use of small-amplitude paleomagnetic fluctuations for correlation and dating of continental climatic changes. Palaeogeogr Palaeoclimatol Palaeoecon 42:167–183

    Google Scholar 

  • Kinny PD, Compston W (1986) Hafnium model ages and evidence for resetting of the U-Pb system in zircon. Terra Cognita 6:153–154

    Google Scholar 

  • Kirsten T (1978) Time and the solar system. In: Dermott SF (ed) Origin of the Solar System. Wiley, London, pp 267–346

    Google Scholar 

  • Klein J, Giegengack R, Middleton R, Sharma P, Underwood JR Jr, Weeks RA (1986) Revealing of exposure using in situ produced 26Al and 10Be in Lybian desert glass. Radiocarbon 28(2A): 547–555

    Google Scholar 

  • Klopin WG, Gerling EK (1947) A new method for the determination of absolute ages of minerals. Dokl Akad Nauk SSSR 58:1415–1417 (in Russian)

    Google Scholar 

  • Knudsen KL, Sejrup HP (1988) Amino acid geochronology of selected interglacial sites in the North Sea area. Boreas 17:347–354

    Google Scholar 

  • Kober B (1986) Whole-grain evaporation for 207Pb/206Pb-age-investigations on single zircons using a double-filament thermal ion source. Contrib Mineral Petrol 93:482–490

    Google Scholar 

  • Kochenov AV, Zenev’yev VV, Lovaleva SA (1965) Some features of the accumulation of uranium in peat bogs. Geokhimiya 1:97–103

    Google Scholar 

  • Köppel V, Grünenfelder M (1979) Isotope geochemistry of lead. In: Jäger E, Hunziker JC (eds) Lectures in isotope geology. Springer, Berlin Heidelberg New York, pp 134–153

    Google Scholar 

  • Köppel V, Sommerauer J (1974) Trace elements and the behaviour of the U-Pb system in inherited and newly formed zircons. Contrib Mineral Petrol 43:71–82

    Google Scholar 

  • Kohmann TP, Goel PS (1963) Terrestrial ages of meteorites from cosmogenic C14. In: Radioactive Dating: 395–411. IAEA, Vienna

    Google Scholar 

  • Koide M, Goldberg ED (1983) Uranium isotopes in the Greenland ice-sheet. Earth Planet Sci Lett 65:245–248

    Google Scholar 

  • Koide M, Soutar A, Goldberg ED (1972) Marine geochronology with Pb-210. Earth Planet Sci Lett 14:442–446

    Google Scholar 

  • Koide M, Bruland KW, Goldberg ED (1973) Th-228/Th-232 and Pb-210 geochronologies in marine and lake sediments. Geochim Cosmochim Acta 37:1171–1187

    Google Scholar 

  • Korkisch J, Steffan I, Hille P, Vonach H, Wild E (1982) Uranium series method applied to fossil bone. J Radioanal Chem 68:107–116

    Google Scholar 

  • Korschinek G, Morinaga H, Nolte E, Preisenberger E, Ratzinger U, Urban A, Dragovitch P, Vogt S (1987) Accelerator mass spectrometry with completely stripped 41Ca and 53Mn ions at the Munnich tandem accelerator. Nucl Instrum Methods Phys Res B 29:67–71

    Google Scholar 

  • Kovacheva M (1982) Archaeomagnetic investigations of geomagnetic secular variations. Phil Trans R Soc Lond A 306:79–86

    Google Scholar 

  • Kralik M, Riedmüller G (1985) Dating fault by Rb-Sr and K-Ar techniques. Terra Cognita 5:279

    Google Scholar 

  • Kralik M, Krumm H, Schramm JM (1987) Low grade and very low grade metamorphism in the northern calcareous Alps and in the Greywacke zone: Illite-crystallinity data and isotopic ages. In: Flügel HW, Faul P (eds) Geodynamics of the eastern Alps: 164–178; Vienna (Deuticke)

    Google Scholar 

  • Kramers JD, Smith CB (1983) A feasibility study of U-Pb and Pb-Pb dating of kimberlites using groundmass mineral fractions and whole rock samples. Isot Geosci 1:23–38

    Google Scholar 

  • Kriausakul N, Mitterer RM (1983) Epimerization of COOH-terminal isoleucine in fossil dipeptides. Geochim Cosmochim Acta 47:963–966

    Google Scholar 

  • Krishnaswami S, Moore WS (1973) Accretion rates of fresh-water manganese deposits. Nature Phys Sci 243:114–116

    Google Scholar 

  • Krishnaswami S, Lal D, Martin JM, Meybeck M (1971) Geochronology of lake sediments. Earth Planet Sci Lett 11:407–414

    Google Scholar 

  • Krishnaswami S, Graustein WC, Turekian KK, Dowd JF (1981) Chronometrie applications of radium isotopes and radon in groundwater. Abstr Progr 13:491–492

    Google Scholar 

  • Krishnaswami S, Mangini A, Thomas JH, Sharma P, Cochran JK, Turekian KK, Parker PD (1982) 10Be and Th isotopes in manganese nodules and adjacent sediments: nodule growth histories and nuclide behavior. Earth Planet Sci Lett 59:217–234

    Google Scholar 

  • Kröll VST (1953) Vertical distribution of radium in deep-sea sediments. Nature (Lond) 171:742

    Google Scholar 

  • Krogh TE (1973) A low-contamination method for the hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim Cosmochim Acta 37:485–494

    Google Scholar 

  • Krogh TE (1982a) Improved accuracy of U-Pb zircon dating by selection of more concordant fractions using a high gradient magnetic separation technique. Geochim Cosmochim Acta 46: 631–635

    Google Scholar 

  • Krogh TE (1982b) Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochim Cosmochim Acta 46: 637–649

    Google Scholar 

  • Krogh TE, Davis GL (1973) The effect of regional metamorphism on U-Pb systems in zircons and a comparison with Rb-Sr systems in the same whole rock and its constituent minerals. Carnegie Inst Washington Yearb 72:601–610

    Google Scholar 

  • Krogh TE, Davis GL (1975) Alteration in zircons and differential dissolution of altered and metamict zircon. Carnegie Inst Washington Yearb 73:619–623

    Google Scholar 

  • Kromer B, Pfleiderer C, Schlosser P, Levin I, Münnich KO, Bonani G, Suter M, Wölfli W (1987) AMS 14C measurement of small volume oceanic water samples: experimental procedure and comparison with low-level counting technique. Nucl Instrum Methods Phys Res B 29:302–305

    Google Scholar 

  • Krouse HR (1980) Chapter 11: Sulfur isotopes in our environment. In: Fritz P, Fontes JC (eds) Handbook of Environmental Isotope Geochemistry, vol 1. The Terrestrial Environment A. Elsevier, Amsterdam, pp 435–471

    Google Scholar 

  • Ku T-L (1965) An evaluation of the U234/U238 method as a tool for dating pelagic sediments. J Geophys Res 70:3457–3474

    Google Scholar 

  • Ku T-L (1968) Protactinium-231 method of dating corals from Barbados island. J. Geophys Res 73:2271–2276

    Google Scholar 

  • Ku T-L (1976) The uranium-series methods of age determination. Ann Rev Earth Planet Sci 4:347–379

    Google Scholar 

  • Ku T-L, Broecker WS (1967a) Uranium, thorium and protactinium in manganese nodule. Earth Planet Sci Lett 2: 317–321

    Google Scholar 

  • Ku T-L, Broecker WS (1967b) Rates of sedimentation in the arctic ocean. Progr Oceanogr 4: 95–104

    Google Scholar 

  • Ku T-L, Joshi LU (1981) Measurements of 238U, 234U and 230Th in impure carbonates for age determination. J Radioanal Chem 67:351–358

    Google Scholar 

  • Ku T-L, Liang Z-C (1984) The dating of impure carbonates with decay-series isotopes. Nucl Instrum Methods Phys Res 223:563–571

    Google Scholar 

  • Ku T-L, Omura A, Chen PS (1979a) Be10 and U-series isotopes in manganese nodules from the Central North Pacific. In: Bischoff JL, Piper DZ (eds) Marine Geology and Oceanography of the Pacific Manganese Nodule Province. Plenum, New York, pp 791–814

    Google Scholar 

  • Ku T-L, Buhl WB, Freeman ST, Knauss KG (1979b) Th230-U234 dating of pedogenic carbonates in gravelly desert soils of Vidal Valley, southeastern California. Geol Soc Am Bull I 90: 1063–1073

    Google Scholar 

  • Ku T-L, Kusakabe M, Nelson DE, Southon JR, Korteling RG, Vogel J, Nowikon I (1982) Constancy of oceanic deposition of 10Be as recorded in manganese crusts. Nature (Lond) 299:240–242

    Google Scholar 

  • Kubik PW, Elmore D, Conard NJ, Nishiizumi K, Arnold JR (1986) Determination of cosmogenic 41Ca in a meteorite with tandem accelerator mass spectrometry. Nature (Lond) 319:568–570

    Google Scholar 

  • Kulp JL (1961) Geological Time Scale. Science 133:1105–1114

    Google Scholar 

  • Kulp JL, Engels J (1963) Discordances in K-Ar and Rb-Sr isotopic ages. In: Radioactive Dating: 219–238. IAEA, Vienna

    Google Scholar 

  • Kulp JL, Volchok HL, Holland HD (1952) Age from metamict minerals. Am Mineral 37:709–718

    Google Scholar 

  • Kulp JL, Bull WB, Freeman ST, Knauss KG (1979) Th230-U234 dating of pedogenic carbonates in gravelly desert soils of Vidal Valley, southeastern California. Geol Soc Am Bull 90:1063–1073

    Google Scholar 

  • Kuroda PK (1960) Nuclear fission in the early history of the earth. Nature (Lond) 187:36–38

    Google Scholar 

  • Kuroda PK (1963) Dating methods based on the process of nuclear fission. In: Radioactive Dating: 45–54. IAEA, Vienna

    Google Scholar 

  • Kuroda PK (1967) Dating methods based on the extinct radionuclides iodine-129 and plutonium-244. In: Radioactive Dating and Methods of Low-Level Counting: 259–268. IAEA, Vienna

    Google Scholar 

  • Kurz MD (1986) In situ production of terrestrial cosmogenic helium and some applications to geochronology. Geochim Cosmchim Acta 50:2855–2862

    Google Scholar 

  • Kurz MD, O’Brien P, Garcia M, Frey FA (1985) Isotopic evolution of Haleakala volcano: primordial, radiogenic and cosmogenic helium. EOS 66:1120

    Google Scholar 

  • Kusakabe M, Ku T-L, Vogel J, Southon JR, Neslon DE, Richards G (1982) 10Be Profiles in Seawater. Nature (Lond) 299:712–714

    Google Scholar 

  • Kutschera K, Hennig W, Paul M, Smither RK, Stephensen RJ, Yutema JL, Alburger DE, Cunning JB, Harbottle G (1980) Measurement of the 32Si half-life via accelerator mass spectrometry. Phys Rev Lett 45:592–596

    Google Scholar 

  • Kuznetsova RI, Lavrukhina VI (1981) Aluminium-26 and proton exposure in early solar system. Meteoritics 16:344–345

    Google Scholar 

  • Kvenvolden KA, Blunt DJ (1979) Amino acid dating of bone nuclei in manganese nodules from the North Pacific Ocean. In: Bischoff JL, Piper DZ (eds) Marine Science 9: Marine Geology and Oceanography of the Pacific Manganese Nodule Province. Plenum, New York London, pp 763–773

    Google Scholar 

  • Kvenvolden KA, Blunt DJ, Clifton HE (1981) Age estimations based on amino acid racemization: Reply to comments of J.F. Wehmiller. Geochim Cosmochim Acta 45:265–267

    Google Scholar 

  • Kyte FT, Zhou Z, Wasson JT (1980) Siderophile-enriched sediments from the Cretaceous-Tertiary boundary. Nature (Lond) 288:651–656

    Google Scholar 

  • Kyte FT, Zhou Z, Wasson JT (1981) High noble metal concentrations in a late Pliocene sediment. Nature (Lond) 292:417–420

    Google Scholar 

  • Labeyrie LD, Duplessy JC (1985) Changes in the Oceanic 13C/12C ratio during the last 140000 years. High-latitude surface water records. Palaeogeogr Palaeoclimatol Palaeoecol 50:217–240

    Google Scholar 

  • Lal D (1962) Cosmic-ray-produced radionuclides in the sea. J Oceanogr Soc Jpn 20th Annivers Vol, pp 600-604

    Google Scholar 

  • Lal D (1987a) 10Be in polar ice: data reflect changes in cosmic ray flux or polar meteorology. Geophys Res Lett 14: 785–788

    Google Scholar 

  • Lal D (1987b) Cosmogenic nuclides produced in situ in terrestrial solids. Nucl Instrum Methods Phys Res B 29: 238–245

    Google Scholar 

  • Lal D, Arnold JR (1985) Tracing quartz through the environment. Proc Indian Acad Sci 94:1–5

    Google Scholar 

  • Lal D, Somayajulu BLK (1984) Some aspects of the geochemistry of silicon isotopes. Tectonophysics 105:383–397

    Google Scholar 

  • Lal D, Goldberg ED, Koide M (1960) Cosmic-ray-produced silicon-32 in nature. Science 131:332–337

    Google Scholar 

  • Lal D, Nijampurkar VN, Rama S (1970) Silicon-32 hydrology. In: Isotope Hydrology 1970:847–863. IAEA, Vienna

    Google Scholar 

  • Lal D, Nijampurkar VN, Somayajulu BLK, Koide M, Goldberg ED (1976) Silicon-32 specific activities in coastal waters of the world oceans. Limnol Oceanogr 21:285–293

    Google Scholar 

  • Lal D, Venkatesan RD, Davis R Jr (1986) Cosmogenic 37Ar, 39Ar in terrestrial rocks. Terra Cognita 6:250

    Google Scholar 

  • Lal D, Nishiizumi K, Arnold JR (1987) In situ cosmogenic 3H, 14C, and 10Be for determining the net accumulation and ablation rates of ice sheets. J Geophys Res 92(B6): 4947–4952

    Google Scholar 

  • Lambert RSJ (1971) The pre-Pleistocene Phanerozoic time-scale — further data. In: Harland WB, Francis EH (eds) The Phanerozoic Time-scale — A Supplement. Geol Soc London, Spec Publ 5:pp9–34

    Google Scholar 

  • Lamothe M, Huntley J (1988) Thermoluminescence dating of late Pleistocene sediments, St Lawrence Lowland, Quebec. Geogr Phys Quatern 42:33–44

    Google Scholar 

  • Lance JC, McIntyre SC, Naney JW, Rousseva SS (1986) Measuring sediment movement at low erosion rates using cesium-127. Soil Sci Soc Am J 50:1303–1309

    Google Scholar 

  • Lancelot JR, Vitrac A, Allègre CJ (1976) Uranium and lead isotopic dating with grain by grain zircon analysis: a study ot complex geological history with a single rock. Earth Planet Sci Lett 29:357–366

    Google Scholar 

  • Lancelot JR, Boullier AM, Maluski H, Ducrot J (1983) Deformation and related radiochronology in a Late Pan-African mylonitic shear zone, Adrar des Iforas (Mali). Contrib Mineral Petrol 82:312–326

    Google Scholar 

  • Lanford WA (1978) 15N-hydrogen profiling scientific applications. Nucl Instrum Methods 149:1–7

    Google Scholar 

  • Lanphere MA, Dalrymple GB (1971) A test of the 40Ar/39Ar age spectrum technique on some terrestrial materials. Earth Planet Sci Lett 12:359–372

    Google Scholar 

  • Larsen ES, Keevil NB (1947) Radioactivity of the rocks of the batholith of Southern California. Bull Geol Soc Am 58:483–493

    Google Scholar 

  • Larsen ES, Keevil NB, Harrison HC (1952) Method for determining the age of igneous rocks using the accessory minerals. Bull Geol Soc Am 63:1045–1052

    Google Scholar 

  • Latham AG, Schwarcz HP, Ford DC, Pearce GW (1979) Palaeomagnetism of stalagmite deposits. Nature (Lond) 280:383–385

    Google Scholar 

  • Latham AG, Schwarcz HP, Ford DC, Pearce GW (1982) The palaeomagnetism and U-Th dating of the Canadian speleothems: evidence for the westward drift, 5.4-2.1 ka BP. Can J Earth Sci 19:1985–1995

    Google Scholar 

  • Lawrence JR, White JWC (1984) Growing season precipitation from D/H ratios of eastern white pine. Nature (Lond) 311:558–560

    Google Scholar 

  • Leavy BD, Phillips FM, Elmore D, Kubik PW, Gladney E (1987) Measurement of cosmogenic 36Cl/Cl in young volcanic rocks: an application of accelerator mass spectrometry in geochronology. Nucl Instrum Methods Phys Res B 29:246–250

    Google Scholar 

  • Ledent D, Patterson C, Tilton GR (1964) Ages of zircon and feldspar concentrates from Northern American beach and river sands. J Geol 72:112–122

    Google Scholar 

  • Lee C, Bada JL, Peterson E (1976) Amino acids in modern and fossil woods. Nature (Lond) 259:183–186

    Google Scholar 

  • Lee RR (1969) Chemical temperature integration. J Appl Meteorol 8:423–430

    Google Scholar 

  • Lee RR, Leich DA, Tombrello TA, Ericson JE, Friedman I (1974) Obsidian hydration profile measurements using a nuclear reaction technique. Nature (Lond) 250:44–47

    Google Scholar 

  • Lee T, Schramm DN, Wefel JP, Blake JB (1978) On the apparent conflict between the time scales inferred from the cosmochronometers 129I, 244Pu, and 26Al. Geol Surv Open-File Rep 78-701:246–247

    Google Scholar 

  • Lehmann BE, Loosli HH (1984) Use of noble gas radioisotopes for environmental research. Inst Phys Conf Ser No 71:219–226

    Google Scholar 

  • Lehmann BE, Oeschger H, Loosli HH, Hurst GS, Allman SL, Chen CH, Kramer SD, Payne MG, Phillips RC, Willis RD, Thonnard N (1985) Counting 81Kr atoms for analysis of groundwater. J Geophys Res 90(B13): 11557–11561

    Google Scholar 

  • Lein AY (1985) The isotope mass balance of sulfur in oceanic sediments (the Pacific ocean as an example). Mar Chem 16:249–257

    Google Scholar 

  • Lemons KW, McAtee JL (1983) The parameters of induced thermoluminescence of some selected phyllosilicates: a crystal defect structure study. Am Mineral 68:915–923

    Google Scholar 

  • Lerman JC, Mook WG, Vogel JC (1970) 14C in tree rings from different localities. In: Olsson IU (ed) Radiocarbon Variations and Absolute Chronology. Almqvist Wiksell, Stockholm, pp 275–301.

    Google Scholar 

  • Le Roux LJ, Glendenin LE (1963) Half-life of 232Th. Proc Nat Meet Nucl Energy, Pretoria, South Africa, pp 83–94

    Google Scholar 

  • Levchenkov OA, Shukolyukov YA (1970) A new method for calculating age and time of metamorphism of minerals and rocks without correction for ordinary lead. Geochem Int 1970:60–65

    Google Scholar 

  • Levchenkov OA, Makeyev AF, Shuleshko IK, Komarov AN, Ovchinnikova GN, Yakovleva SZ (1982) Uranium-lead isochron dating of heterogeneous zircons. Dokl Acad Sci USSR, Earth Sci Sec 251:51–53

    Google Scholar 

  • Levin BY (1982) Asteroids, comets, meteor matter — their place and role in the cosmogony of the solar system. Izvestiya Earth Phys 18:414–424

    Google Scholar 

  • Levin I, Munnich KO, Weiss W (1980) The effect of anthropogenic CO2 and 14C sources on the distribution of 14C in the atmosphere. Radiocarbon 22(II): 379–391

    Google Scholar 

  • Levy DM, Moore WS (1985) Radium-224 in continental shelf waters. Earth Planet Sci Lett 73:226–230

    Google Scholar 

  • Lewin R (1983) Isotopes give clues to past diet. Science 220:1369

    Google Scholar 

  • Lewis DR (1966) Exoelectron-emission phenomena and geological applications. Geol Soc Am Bull 77:761–770

    Google Scholar 

  • Libby WF (1946) Atmospheric helium-three and radiocarbon from cosmic radiation. Phys Rev 69:671–672

    Google Scholar 

  • Libby WF (1953) The potential usefulness of natural tritium. Proc Nat Acad Sci 39:245–247

    Google Scholar 

  • Lindner M, Leich DA, Russ GP, Bazan JM, Borg RJ (1989) Direct determination of the half-life of 187Re. Geochim Cosmochim Acta 53:1597–1606

    Google Scholar 

  • Linick TW (1980) Bomb-produced carbon-14 in the surface water of the Pacific ocean. Radiocarbon 22(II): 599–606

    Google Scholar 

  • Lippolt HJ (1977) Isotopische Salz-Datierung: Deutung und Bedeutung. Aufschluβ 28:369–389

    Google Scholar 

  • Lippolt HJ, Raczek I (1979a) Rinneite — dating of episodic events in potash salt deposits. J Geophys 46: 225–228

    Google Scholar 

  • Lippolt HJ, Raczek I (1979b) Cretaceous Rb-Sr total rock ages of Permian salt rocks. Naturwissenschaften 66: 422–423

    Google Scholar 

  • Lippolt HJ, Weigel E (1988) 4He diffusion in 40Ar-retentive minerals. Geochim Cosmochin Acta 52:1449–1458

    Google Scholar 

  • Lippolt HJ, Boschmann W, Arndt H (1982) Helium und Uran in Schwarz wälder Bleiglanzen, ein Datierungsversuch. Oberrhein Geol Abh 31:31–46

    Google Scholar 

  • Lippolt HJ, Schleicher H, Raczek I (1983) Rb-Sr systematics of Permian volcanites of the Schwarzwald (SW Germany). Part I: Space of time between plutonism and late orogenic volcanism. Contrib Mineral Petrol 84:272–280

    Google Scholar 

  • Lippolt HJ, Fuhrmann U, Hradetzky H (1986) 40Ar/39Ar age determinations on sanidines of the Eifel volcanic field (Federal Republic of Germany): Constraints on age and duration of a middle Pleistocene cold period. Chem Geol 59:187–204

    Google Scholar 

  • Lister G, Kelts K, Schmid R, Bonani G, Hofmann H, Morenzoni E, Nessi M, Suter M, Wölfli W (1984) Correlation of the paleoclimatic record in lacustrine sediment sequences: 14C dating by AMS. Nucl Instr Methods 233(B5): 389–393

    Google Scholar 

  • Livingston HD, Anderson RF (1983) Large particle transport of plutonium and other fallout radionuclides to the deep ocean. Nature (Lond) 303:228–230

    Google Scholar 

  • Lo Bello P, Feraud G, Hall CM, York D, Lavina P, Bernat M (1987) 40Ar/39Ar step-heating and laser fusion dating of a Quaternary pumice from Neschers, Massif Central, France: The defeat of xenocryst contamination. Chem Geol Isot Geosci Sec 66:61–71

    Google Scholar 

  • Lodge JP, Bien GS, Suess HE (1960) The carbon-14 content of urban airborne particulate matter. Int J Air Poll 2:309–312

    Google Scholar 

  • LöfVendahl R, Åberg G (1981) An isotope study of Swedish secondary U-Pb-minerals. Geol Fören Stockholm Förh 103:331–342

    Google Scholar 

  • Longinelli A (1984) Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research? Geochim Cosmochim Acta 48:385–390

    Google Scholar 

  • Loosli HH (1983) A dating method with 39Ar. Earth Plan Sci Lett 63:51–62

    Google Scholar 

  • Loosli HH (1988) Argon-39: a tool to investigate ocean water circulation and mixing. In: Fritz P, Fontes JCh (eds) Handbook of Environmental Isotope Geochemistry, vol 3:The Marine Environment. Elsevier, Amsterdam

    Google Scholar 

  • Loosli HH, Oeschger HH (1968) Detection of 39Ar in atmospheric argon. Earth Planet Sci Lett 5:191–198

    Google Scholar 

  • Loosli HH, Oeschger H (1979) Argon-39, carbon-14, and krypton-85 measurements in groundwater samples. In: Isotope Hydrology 1978(II): 931–945. IAEA, Vienna

    Google Scholar 

  • Lorius C, Merlivat L, Jouzel J, Pourchet M (1979) A 30,000-yr isotope climatic record from Antarctic ice. Nature (Lond) 280:644–648

    Google Scholar 

  • Lorius C, Jouzel J, Ritz C, Merlivat L, Barkov NI, Korotkevich YS, Kotlyakov VM (1985) A 150,000-year climatic record from Antarctic ice. Nature (Lond) 316:591–596

    Google Scholar 

  • Lovejoy CO, Burstein AH, Heiple KG (1972) Primate phylogeny and immunological distance. Science 176:803–805

    Google Scholar 

  • Lovering JF, Hinthorne JR, Conrad RL (1976) Direct 207Pb/206Pb dating by ion microprobe of uranium-thorium rich phases in Allende calcium-aluminium-rich clasts (cars). Lunar Sci VII:504–506

    Google Scholar 

  • Lovlie R (1989) Paleomagnetic stratigraphy: a correlation method. Quatern Int 1:129–149

    Google Scholar 

  • Lowe DC, Wallace G, Sparks RJ (1987) Applications of AMS in the atmospheric and oceanographie sciences. Nucl Instrum Methods Phys Res B 29:291–296

    Google Scholar 

  • Lowe JP, Lowe DJ, Hodder APW, Wilson AT (1984) A tritium exchange method for obsidian hydration shell measurement. Isot Geosci 2:351–363

    Google Scholar 

  • Lowrie W, Alvarez W (1981) One hundred million years of geomagnetic polarity history. Geology 9:392–397

    Google Scholar 

  • Luck JM, Allègre CJ (1982) The study of molybdenites through the 187Re-187Os chronometer. Earth Planet Sci Lett 61:291–296

    Google Scholar 

  • Luck JM, Arndt NT (1985) Re/Os isochron for Archean komatiite from Alexo, Ontario. Terra Cognita 5:323

    Google Scholar 

  • Luck JM, Turekian KK (1983) Osmium-187/Osmium-186 in manganese nodules and the Cretaceous-Tertiary boundary. Science 222:613–615

    Google Scholar 

  • Luck JM, Birck J-L, Allègre CJ (1980) 187Re-187Os systematics in meteorites: early chronology of the Solar System and age of the Galaxy. Nature (Lond) 283:256–259

    Google Scholar 

  • Ludwig KR (1977) Effect of initial radioactive daughter disequilibrium on U-Pb isotope apparent ages of young minerals. J Res US Geol Surv 5:663–667

    Google Scholar 

  • Ludwig KR (1980) Calculation of uncertainties of U-Pb isotope data. Earth Planet Sci Lett 46:212–220

    Google Scholar 

  • Ludwig KR (1983) Plotting and regression programs for isotope geochemists, for use with HP-86/87 microcomputers. US Geol Surv Open-File Rep 83-849:94

    Google Scholar 

  • Ludwig KR Silver LT (1977) Lead-isotope inhomogeneity in Precambrian igneous K-feldspars. Geochim Cosmochin Acta 41:1457–1471

    Google Scholar 

  • Ludwig KR, Lindsey DA, Zielinski RA, Simmons KR (1980) U-Pb ages of uraniferous opals and implications for the history of beryllium, fluorine, and uranium mineralization at Spor Mountain, Utah. Earth Planet Sci Lett 46:221–232

    Google Scholar 

  • Ludwig KR, Rubin B, Fishman NS, Reynolds RL (1982) U-Pb ages of uranium ores in the Church Rock uranium district, New Mexico. Econ Geol 77:1942–1945

    Google Scholar 

  • Lugmair GW (1974) Sm-Nd ages: a new dating method. Meteoritics 9:369

    Google Scholar 

  • Lugmair GW, Carlson RW (1978) The Sm-Nd history of KREEP. Proc 9th Lunar Planet Sci Conf, pp 689-704

    Google Scholar 

  • Lugmair GW, Marti K (1978) Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth Planet Sci Lett 39:349–357

    Google Scholar 

  • Lugmair GW, Scheinin NB, Marti K (1975) Sm-Nd age and history of Apollo 17 basalt 75075: evidence of early differentiation of the lunar exterior. Proc Lunar Sci Conf 6th vol 2. Geochim Cosmochin Acta Suppl 6:1419–1429

    Google Scholar 

  • Lupton JE, Craig H (1975) Excess 3He in oceanic basalts, evidence for terrestrial primordial helium. Earth Planet Sci Lett 26:133–139

    Google Scholar 

  • Luz B, Kolodny Y, Horowitz M (1984) Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochim Cosmochim Acta 48:1689–1693

    Google Scholar 

  • Lyons RG (1988) Determination of alpha effectiveness in ESR dating using nuclear accelerator techniques: methods and energy dependence. Nucl Tracks Radiat Meas 14:275–280

    Google Scholar 

  • Lyons RG, Bowmaker GA, O’Connor CJ (1988) Dependence of accumulated dose in ESR dating on microwave power: a contra-indication to the routine use of low power levels. Nucl Tracks Radiat Meas 14:243–251