Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 94 / 1))

Abstract

Our understanding of the aetiology and development of neoplasia centres around our knowledge of the behaviour or mammalian cells and their transformed counterparts. Fundamental cancer research today aims to define precisely the molecular lesions which distinguish the “normal” from the “malignant” cell and to determine how these affect cellular behaviour in vivo. When these mechanisms are elucidated we will have the basis for a more rational design of diagnostic and prognostic tests and of the therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson SA, Todaro GJ (1968) Development of 3T3-like lines from Balb/e mouse embryo cultures: transformation susceptibility to SV40. J Cell Physiol 72: 141–148.

    PubMed  CAS  Google Scholar 

  • Ambesi-Impiombato FS, Parks LA, Coon HG (1980) Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci USA 77: 3455–3459.

    PubMed  CAS  Google Scholar 

  • Asano M, Iwakura Y, Kawade Y (1985) SV40 vector with early gene replacement efficient in transducing exogenous DNA into mammalian cells. Nucleic Acids Res 13: 8573–8586.

    PubMed  CAS  Google Scholar 

  • Balmain A (1985) Transforming ras oncogenes and multistage carcinogenesis. Br J Cancer 51: 1–7.

    PubMed  CAS  Google Scholar 

  • Balmain A, Brown K (1988) Oncogene activation in chemical carcinogenesis. Adv Cancer Res 51: 147–182.

    PubMed  CAS  Google Scholar 

  • Balmain A, Pragnell I (1983) Mouse skin carcinomas induced in vivo by chemical carcinogens have a transforming Harvey-ras oncogene. Nature 303: 72–74.

    PubMed  CAS  Google Scholar 

  • Balmain A, Ramsden M, Bowden GT, Smith J (1984) Activation of the mouse cellular Harveyras gene in chemically induced benign skin papillomas. Nature 307: 658–660.

    PubMed  CAS  Google Scholar 

  • Banks-Schlegel SP, Howley PM (1983) Differentiation of human epidermal cells transformed by SV40. J Cell Biol 196: 330–337.

    Google Scholar 

  • Barrett JC (1985) Cell culture models of multistep carcinogenesis. In: Likhachev A, Anisimov V, Montesano R (eds) Age-related factors in carcinogenesis. I ARC Sci Publ no 58 (International Agency for Research on Cancer) Lyon, p 181.

    Google Scholar 

  • Barrett JC, Ts’O POP (1978) Evidence for the progressive nature of neoplastic transformation in vitro. Proc Natl Acad Sci USA 75: 3761–3765.

    Google Scholar 

  • Barrett JC, Crawford BD, Ts’O POP (1980) The role of somatic mutation in a multistage model of carcinogenesis. In: Mishra V, Dunkel VC, Mehlamn M (eds) Mammalian cell transformation by chemical carcinogens. Senate Press, Princeton, p 467.

    Google Scholar 

  • Barrett JC, Thomassen DG, Hesterberg TW (1983) Role of gene and chromosomal mutations in cell transformation. Ann NY Acad Sci 407: 291–300.

    PubMed  CAS  Google Scholar 

  • Barrett JC, Hesterberg TW, Thomassen DG (1984) Use of cell transformation systems for carcinogenicity testing and mechanistic studies of carcinogenesis. Pharmacol Rev 36: 53S–70S

    PubMed  CAS  Google Scholar 

  • Barrett JC, Hesterberg TW, Oshimura M, Tsutsui T (1985) Role of chemically induced mutagenic events in neoplastic transformation of Syrian hamster embryo cells. In: Barrett JC, Tennant RW (eds) Carcinogenesis, vol 9. Raven, New York, p 123.

    Google Scholar 

  • Benedict WF, Jones PA, Laug WE, Igel HJ, Freeman AE (1975) Characterisation of human cells transformed in vitro by urethane. Nature 256: 322–324.

    PubMed  CAS  Google Scholar 

  • Berwald Y, Sachs L (1963) In vitro cell transformation with chemical carcinogens. Nature 200: 1182–1184.

    PubMed  CAS  Google Scholar 

  • Berwald Y, Sachs L (1965) In vitro transformation of normal cells to tumor cells by carcinogenic hydrocarbons. JNCI 35: 641–661.

    Google Scholar 

  • Bond VC, Wold B (1987) Poly-L-ornithine-mediated transformation of mammalian cells. Mol Cell Biol 7: 2286–2293.

    PubMed  CAS  Google Scholar 

  • Boone CW (1975) Malignant hemangioendotheliomas produced by subcutaneous inoculation of Balb/3T3 cells attached to glass beads. Science 188: 68–70.

    PubMed  CAS  Google Scholar 

  • Boone CW, Takeichi N, Paranjpe M, Gilden R (1976) Vasoformative sarcomas arising from BALB/3T3 cells attached to solid substrates. Cancer Res 36: 1626–1633.

    PubMed  CAS  Google Scholar 

  • Bos JL, Toksoz D, Marshall CJ, Verlaande Vries M, Veeneman GH, van der Eb AJ, van Boom JH, Janssen JWG, Steenvoorden ACM (1985) Amino-acid substitution at codon 13 of the N-ras oncogene in human acute myeloid leukaemia. Nature 315: 726–730.

    PubMed  CAS  Google Scholar 

  • Bos JL, Fearon ER, Hamilton SR, Verlaande Vries M, van Boom JH, van der Eb AJ, Vogelstein B (1987) Prevalence of ras gene mutations in human colorectal cancers. Nature 327: 293–297.

    PubMed  CAS  Google Scholar 

  • Bouck N, di Mayorca G (1976) Somatic mutation as the basis for malignant transformation of BHK cells by chemical carcinogens. Nature 264: 722–727.

    PubMed  CAS  Google Scholar 

  • Bouck N, di Mayorca G (1982) Chemical carcinogens transform BHK cells by inducing a recessive mutation. Mol Cell Biol 2: 97–105.

    PubMed  CAS  Google Scholar 

  • Bouck N, Kokkinakis D, Ostrowsky J (1984) Induction of a step in carcinogenesis that is normally associated with mutagenesis by nonmutagenic concentrations of 5- azacytidine. Mol Cell Biol 4: 1231–1237.

    PubMed  CAS  Google Scholar 

  • BoutweÜ RK, Verma AK, Ashendel CL, Astrup E (1982) Mouse skin: a useful model system for studying the mechanism of chemical carcinogenesis. In: Hecker E et al. (eds) Carcinogenesis, vol 7. Raven, New York, pi Brash DE, Reddel RR, Quanrud M, Yang K, Farrell MP, Harris CC (1987) Strontium phosphate transfection of human cells in primary culture: stable expression of the simian virus 40 large T-antigen gene in primary human bronchial epithelial cells. Mol Cell Biol 7: 2031–2034.

    Google Scholar 

  • Brown KW, Parkinson EK (1984) Extracellular matrix components produced by SV40- transformed human epidermal keratinocytes. Int J Cancer 33: 257–263.

    PubMed  CAS  Google Scholar 

  • Brown K, Quintanilla M, Ramsden M, Kerr IB, Young S, Balmain A (1986) v-ras genes from Harvey and BALB murine sarcoma viruses can act as initiators of two-stage mouse skin carcinogenesis. Cell 46: 447–456.

    Google Scholar 

  • Buick RN, Pollack MN (1984) Perspectives on clonogenic tumor cells, stem cells, and oncogenes. Cancer Res 44: 4909–4918.

    PubMed  CAS  Google Scholar 

  • Burns FJ, Vanderlaan M, Sivak A, Albert RE (1976) Regression kinetics of mouse skin papillomas. Cancer Res 36: 1422–1426.

    PubMed  CAS  Google Scholar 

  • Byrd P, Brown KW, Gallimore PH (1982) Malignant transformation of human embryo retinoblasts by cloned adenovirus 12 DNA. Nature 298: 69–71.

    PubMed  CAS  Google Scholar 

  • Capecchi MR (1980) High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22: 479–488.

    PubMed  CAS  Google Scholar 

  • Casto BC, DiPaolo JA (1975) In vitro transformation: interaction of chemicals, viruses and irradiation. Bibl Haematologica 40: 197–199.

    Google Scholar 

  • Casto BC, Janosko N, DiPaolo JA (1977) Development of a focus assay model for transformation of hamster cells in vitro by chemical carcinogens. Cancer Res 37: 3508–3515.

    PubMed  CAS  Google Scholar 

  • Cepko CL, Roberts BE, Mulligan RC (1984) Construction and applications of a highly transmissible murine retrovirus shuttle vector. Cell 37: 1053–1062.

    PubMed  CAS  Google Scholar 

  • Chang SE (1986) In vitro transformation of human epithelial cells. Biochim Biophys Acta 823: 161–194.

    PubMed  CAS  Google Scholar 

  • Chang SE, Keen J, Lane EB, Taylor-Papadimitriou J (1982) Establishment and characterization of SV40-transformed human breast epithelial cell lines. Cancer Res 42: 2040–2053.

    PubMed  CAS  Google Scholar 

  • Chen C, Okayama H (1987) High efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7: 2745–2752.

    PubMed  CAS  Google Scholar 

  • Chen TT, Heidelberger C (1969 a) Cultivation in vitro of cells derived from adult C3H mouse ventral prostate. JNCI 42: 903–914.

    Google Scholar 

  • Chen TT, Heidelberger C (1969 b) In vitro malignant transformation of cells derived from mouse prostate in the presence of 3-methylcholanthrene. JNCI 42:915–925.

    Google Scholar 

  • Chen TT, Heidelberger C (1969 c) Quantitative studies on the malignant transformation of mouse prostate cells by carcinogenic hydrocarbons in vitro. Int J Cancer 4: 166–178.

    Google Scholar 

  • Christian BJ, Loretz LJ, Oberley TD, Reznikoff CA (1987) Characterization of human uroepithelial cells immortalized in vitro by simian virus 40. Cancer Res 47: 6066–6073.

    PubMed  CAS  Google Scholar 

  • Chu G, Hayakawa H, Berg P (1987) Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res 15: 1311–1326.

    PubMed  CAS  Google Scholar 

  • Clarke MF, Westin E, Schmidt D, Josephs SF, Ratner L, Wong-Staal F, Gallo RC, Reitz MS Jr (1984) Transformation of NIH3T3 cells by a human c-sis cDNA clone. Nature 308: 464–467

    PubMed  CAS  Google Scholar 

  • Coca-Prados M, Wax MB (1986) Transformation of human ciliary epithelial cells by simian virus 40: induction of cell proliferation and retention of ß2-adrenergic receptors. Proc Natl Acad Sci USA 83: 8754–8758.

    PubMed  CAS  Google Scholar 

  • Colburn NH, Vorder Bruegge WF, Bates JR, Gray RH, Rossen JD, Kelsey WH, Shimada T (1978) Correlation of anchorage-independent growth with tumorigenicity of chemically transformed mouse epidermal cells. Cancer Res 38: 624–634.

    PubMed  CAS  Google Scholar 

  • Cook PJ, Doll R, Fellingham SA (1969) A mathematical model for the age distribution of cancer in man. Int J Cancer 4: 93–112.

    PubMed  CAS  Google Scholar 

  • Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM, Vande Woude GF (1984) Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 311: 29–33.

    PubMed  CAS  Google Scholar 

  • Cowell JK (1981) Chromosome abnormalities associated with salivary gland epithelial cell lines transformed in vitro and in vivo with evidence of a role for genetic imbalance in transformation. Cancer Res 41: 1508–1517.

    PubMed  CAS  Google Scholar 

  • Cowell JK, Wigley CB (1980) Changes in DNA content during in vitro transformation of mouse salivary gland epithelium. JNCI 64: 1443–1449.

    Google Scholar 

  • Cowell JK, Wigley CB (1982) Chromosome changes associated with the progression of cell lines from preneoplastic to tumorigenic phenotype during transformation of mouse salivary gland epithelium in vitro. JNCI 69: 425–433.

    Google Scholar 

  • Crawford B, Klein L, Melville M, Morry D, Ts’o Pop (1980) Somatic genetics of in vitro neoplastic transformation. Proc Am Assoc Cancer Res 21: 127.

    Google Scholar 

  • Crawford B, Barrett JC, Ts’O POP (1983) Neoplastic conversion of preneoplastic Syrian hamster cells: rate estimation by fluctuation analysis. Mol Cell Biol 3: 931–945.

    Google Scholar 

  • Crocker TT, O’Donnell TV, Nunes LL (1973) Toxicity of benzo(a)pyrene and air pollution composite for adult human bronchial mucosa in organ culture. Cancer Res 33: 88–93.

    PubMed  CAS  Google Scholar 

  • Crowe FW, Schull WJ, Neel JV (1956) A clinical pathology and genetic study of multiple neurofibromatosis. CC Thomas, Springfield.

    Google Scholar 

  • Defendi V, Naimski P, Steinberg ML (1982) Human cells transformed by SV40 revisited: the epithelial cells. J Cell Physiol [Suppl] 2: 131–140.

    CAS  Google Scholar 

  • Der CJ, Krontiris TG, Cooper GM (1982) Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc Natl Acad Sci 79: 3637–3640.

    PubMed  CAS  Google Scholar 

  • DiPaolo J A (1983) Relative difficulties in transforming human and animal cells in vitro. JNCI 70: 3–8.

    Google Scholar 

  • DiPaolo JA, Donovan PJ, Nelson RL (1971) In vitro transformation of hamster cells by polycyclic hydrocarbons: factors influencing the number of cells transformed. Nature New Biol 230: 240–242.

    PubMed  CAS  Google Scholar 

  • Dorman BH, Siegfried JM, Kaufman DG (1983) Alterations of human endometrial stromal cells produced by N-methyl-AT’-nitro-N-nitrosoguanidine. Cancer Res 43: 3348–3357.

    PubMed  CAS  Google Scholar 

  • Earle WR (1943) Production of malignancy in vitro. IV. The mouse fibroblast cultures and changes in the living cells. JNCI 4: 165–212.

    Google Scholar 

  • Earle WR, Nettleship A (1943) Production of malignancy in vitro. V. Results of injection of cultures into mice. JNCI 4: 213–227.

    Google Scholar 

  • Edelman B, Steinberg ML, Defendi V (1984) Changes in fibronectin synthesis and binding distribution in SV40-transformed human keratinocytes. Int J Cancer 35: 219–225.

    Google Scholar 

  • Ege T, Reisbig RR, Rogne S (1984) Enhancement of DNA-mediated gene transfer by in-hibitors of autophagic-lysosomal function. Exptl Cell Res 155: 9–16.

    PubMed  CAS  Google Scholar 

  • El-Gerzawi S, Heatfield BM, Trump BF (1982) N-methyl-N-nitrosourea and saccharin: effects on epithelium of normal human urinary bladder in vitro. JNCI 69: 577–583.

    Google Scholar 

  • Eliyahu D, Raz A, Gruss P, Givol D, Oren M (1984) Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature 312: 646–649.

    PubMed  CAS  Google Scholar 

  • Emura M, Mohr U, Kakunaga T, Hilfrich J (1985) Growth inhibition and transformation of a human fetal tracheal epithelial cell line by long-term exposure to diethyl- nitrosamine. Carcinogenesis 6: 1079–1085.

    PubMed  CAS  Google Scholar 

  • Eva A, Aaronson SA (1985) Isolation of a new human oncogene from a diffuse B-cell lymphoma. Nature 316: 273–275.

    PubMed  CAS  Google Scholar 

  • Farber E (1984) The multistep nature of cancer development. Cancer Res 44: 4217–4223.

    PubMed  CAS  Google Scholar 

  • Farber E, Cameron R (1980) The sequential analysis of cancer development. Adv Cancer Res 35: 125–226.

    Google Scholar 

  • Feigner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northtop JP, Ringold GM, Danielson M (1987) Lipofection: a highly efficient, lipid-mediated DNA- transfection procedure. Proc Natl Acad Sci USA 84: 7413–7417.

    Google Scholar 

  • Fernandez A, Mondal S, Heidelberger C (1980) Probabilistic view of the transformation of cultured C3H/10T1/2 mouse embryo fibroblasts by 3-methylcholanthrene. Proc Natl Acad Sci USA 77: 7272–7276.

    PubMed  CAS  Google Scholar 

  • Fialkow PJ (1972) Use of genetic markers to study cellular origin and development of tumors in human females. Adv Cancer Res 15: 191–226.

    PubMed  CAS  Google Scholar 

  • Fitzgerald DJ, Barrett JC, Nettesheim P (1986) Changing responsiveness to all-trans retinoic acid of rat tracheal epithelial cells at different stages in neoplastic transformation. Carcinogenesis 7: 1715–1721.

    PubMed  CAS  Google Scholar 

  • Foulds L (1969) Neoplastic development, vol 1. Academic, London Foulds L (1975) Neoplastic development, vol 2. Academic, London Fraley R, Subramani S, Berg P, Papahadjopoulos D (1980) Introduction of liposome-encapsulated SV40 DNA into cells. J Biol Chem 255: 10431–10435.

    Google Scholar 

  • Franks LM, Knowles MA (1978) The structure of tumours derived from mouse submandibular gland epithelium transformed in vitro. Br J Cancer 37: 240–247.

    PubMed  CAS  Google Scholar 

  • Franks LM, Wilson PD (1977) Origin and ultrastructure of cells in vitro. Int Rev Cytol 48: 55–139.

    PubMed  CAS  Google Scholar 

  • Franza BR, Maruyama K, Garrels JI, Ruley HE (1986) In vitro establishment is not a sufficient prerequisite for transformation by activated ras oncogenes. Cell 44: 409–418.

    PubMed  CAS  Google Scholar 

  • Freedman VH, Shin S (1974) Cellular tumorigenicity in nude mice: correlation with cell growth in semi-solid medium. Cell 3: 355–359.

    PubMed  CAS  Google Scholar 

  • Freeman AE, Igel HJ, Price PJ (1975) Carcinogenesis in vitro. In vitro transformation of rat embryo cells: correlations with the known tumorigenic activation of chemicals in rodents. In Vitro 11: 107–116.

    Google Scholar 

  • Freeman AE, Lake RS, Igel HJ, Gernand L, Pezzutti MR, Malone JM, Mark C, Benedict WF (1977) Heteroploid conversion of human skin cells by methylcholanthrene. Proc Natl Acad Sci USA 74: 2451–2455.

    PubMed  CAS  Google Scholar 

  • Frost E, Williams J (1978) Mapping temperature-sensitive and host-range mutations of adenovirus type 5 by marker rescue. Virology 91: 39–50.

    PubMed  CAS  Google Scholar 

  • Fry DG, Milam LD, Maher VM, McCormick JJ (1986) Transformation of diploid human fibroblasts by DNA transfection with the v-sis oncogene. J Cell Physiol 128: 313–321.

    PubMed  CAS  Google Scholar 

  • Fusenig NE, Samsel W, Thon W, Worst PKM (1973) Malignant transformation of epidermal cells in culture by DMBA. INSERM 19: 219–228.

    Google Scholar 

  • Gart JJ, Di Paolo J A, Donovan PJ (1979) Mathematical models and the statistical analyses of cell transformation experiments. Cancer Res 39: 5069–5075.

    PubMed  CAS  Google Scholar 

  • Gey GO (1941) Cytological and cultural observations on transplantable rat sarcomata produced by inoculation of altered normal cells maintained in continuous culture. Cancer Res 1: 737

    Google Scholar 

  • Girardi AJ, Jensen FC, Koprowski H (1965) SV40-induced transformation of human diploid cells: crisis and recovery. J Cell Physiol 65: 69–83.

    PubMed  CAS  Google Scholar 

  • Gopal TV (1985) Gene transfer method for transient gene expression. Stable transformation and cotransformation of suspension cell cultures. Mol Cell Biol 5: 1188–1190.

    PubMed  CAS  Google Scholar 

  • Gorman CM, Howard BH (1983) Expression of recombinant plasmids in mammalian cells is enhanced by sodium butyrate. Nucleic Acids Res 11: 7631–7648.

    PubMed  CAS  Google Scholar 

  • Gorman SD, Cristofalo VJ (1985) Reinitiation of cellular DNA synthesis in BrdUselected, nondividing, senescent WI-38 cells by simian virus 40 infection. J Cell Physiol 125: 122–126.

    Google Scholar 

  • Graham FL, van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 62: 456–467.

    Google Scholar 

  • Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36: 59–72.

    PubMed  CAS  Google Scholar 

  • Graham FL, Bacchetti S, McKinnon R (1980) Transformation of mammalian cells with DNA using the calcium technique. In: Baserga R, Croce C, Rovera G (eds) Introduction of macromolecules into viable mammalian cells. Liss, New York, p 3.

    Google Scholar 

  • Gray TE, Thomassen DG, Mass MJ, Barrett JC (1983) Quantitation of cell proliferation, colony formation, and carcinogen-induced cytotoxicity of rat tracheal epithelial cells grown in culture on 3T3 feeder layers. In Vitro 19: 559–570.

    Google Scholar 

  • Grove GL, Cristofalo VJ (1977) Characterization of the cell cycle of cultured human diploid cells: effects of aging and hydrocortisone. J Cell Physiol 90: 415–422.

    PubMed  CAS  Google Scholar 

  • Haber DA, Fox DA, Dynan WS, Thilly WG (1977) Cell density dependence of focus formation in the C3H/10T1/2 transformation assay. Cancer Res 37: 1644–1648.

    PubMed  CAS  Google Scholar 

  • Hall A, Marshall CJ, Spurr NK, Weiss RA (1983) Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1. Nature 303: 396–400.

    PubMed  CAS  Google Scholar 

  • Hanafusa H (1977) Cell transformation by RNA tumor viruses. Comp Virol 10: 401–483.

    CAS  Google Scholar 

  • Harper JR, Roop DR, Yuspa SH (1986) Transfection of the EJ rasPa gene into keratinocytes derived from carcinogen-induced mouse papillomas causes malignant progression. Mol Cell Biol 6: 3144–3149.

    PubMed  CAS  Google Scholar 

  • Harris H (1987) Human tissues and cells in carcinogenesis research. Cancer Res 47: 1–10.

    PubMed  CAS  Google Scholar 

  • Hashimoto Y, Kitagawa HS (1974) In vitro neoplastic transformation of epithelial cells of rat urinary bladder by nitrosamines. Nature 252: 497–499.

    PubMed  CAS  Google Scholar 

  • Haugen A, Schafer P, Lechner JF, Stoner GD, Trump BF, Harris CC (1982) Cellular ingestion, toxic effects and lesions observed in human respiratory epithelium cultured with asbestos and glass fibers. Int J Cancer 30: 265–272.

    PubMed  CAS  Google Scholar 

  • Hayflick L, Moorehead PS (1961) The serial cultivation of human diploid cell strains. Exptl Cell Res 25: 585–621.

    Google Scholar 

  • Heidelberger C (1973) Chemical oncogenesis in culture. Adv Cancer Res 18: 317–366.

    PubMed  CAS  Google Scholar 

  • Heidelberger C (1975) Chemical carcinogenesis. Ann Rev Biochem 44: 79–121.

    PubMed  CAS  Google Scholar 

  • Heidelberger C, Freeman AE, Pienta RJ, Sivak A, Bertram JA, Casto BC, Dunkel VC, Francis MC, Kakunaga T, Little JB, Schechtman LM (1983) Cell transformation by chemical agents: a review and analysis of the literature. Mutat Res 114: 283–385.

    PubMed  CAS  Google Scholar 

  • Henderson E, Miller G, Robinson J, Heston L (1977) Efficiency of transformation of lymphocytes by Epstein-Barr virus. Virology 76: 152–763.

    PubMed  CAS  Google Scholar 

  • Hennings H, Michael D, Creng C, Steinert P, Holbrook K, Yuspa SH (1980) Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19: 245–254.

    PubMed  CAS  Google Scholar 

  • Hennings H, Steinert P, Buxman MM (1981) Calcium induction of transglutaminase and the formation of e (γ-glutamyl) lysine cross-links in cultured mouse epidermal cells. Biochem Biophys Res Commun 102: 739–745.

    PubMed  CAS  Google Scholar 

  • Hicks RM (1980) Multistage carcinogenesis in the urinary bladder. Br Med Bull 36: 39–46.

    PubMed  CAS  Google Scholar 

  • Hicks RM, Chowaniec J (1978) Experimental induction, histology and ultrastructure of hyperplasia and neoplasia of the urinary bladder epithelium. Int Rev Exp Pathol 18: 199–280.

    PubMed  CAS  Google Scholar 

  • Houweling A, van der Elsen PJ, van der Eb AJ (1980) Partial transformation of primary rat cells by the leftmost 4.5% fragment of adenovirus 5 DNA. Virology 105: 537–654.

    PubMed  CAS  Google Scholar 

  • Hronis TS, Steinberg ML, Defendi V, Sun T-T (1984) Simple epithelial nature of some simian virus-40-transformed human epidermal keratinocytes. Cancer Res 44: 5797–5804.

    PubMed  CAS  Google Scholar 

  • Huberman E, Sachs L (1966) Cell susceptibility to transformation and cytotoxicity by the carcinogenic hydrocarbon benzo(a)pyrene. Proc Natl Acad Sci USA 56: 1123–1129.

    PubMed  CAS  Google Scholar 

  • Huberman E, Donovan PJ, DiPaolo JA (1972) Mutation and transformation of cultured mammalian cells by N-acetoxy-N-2-fluorenylacetamide. JNCI 48: 837–840.

    Google Scholar 

  • Hudziak RM, Schlessinger J, Ullrich A (1987) Increased expression of the putative growth factor receptor pl85HER2 causes transformation and tumorigenesis of NIH3T3 cells. Proc Natl Acad Sci USA 84: 7159–7163.

    PubMed  CAS  Google Scholar 

  • Hurlin PJ, Fry DG, Maher VM, McCormick J J (1987) Morphological transformation, focus formation and anchorage independence in diploid human fibroblasts by expression of a transfected H-ras oncogene. Cancer Res 47: 5752–5757.

    PubMed  CAS  Google Scholar 

  • Hwang L-HS, Gilboa E (1984) Expression of genes introduced into cells by retroviral infection as more efficient than that of genes introduced into cells by DNA transfection. J Virol 50: 417–424.

    PubMed  CAS  Google Scholar 

  • Igel HJ, Freeman AE, Spiewak JE, Kleinfeld KL (1975) Carcinogenesis in vitro. II. Chemical transformation of diploid human cell cultures: a rare event. In Vitro 11: 117–129.

    Google Scholar 

  • Indo K, Miyaji H (1979) Qualitative changes in the biologic characteristics of cultured fetal rat keratinizing epidermal cells during the process of malignant transformation after benzo(a)pyrene treatment. JNCI 63: 1017–1027.

    Google Scholar 

  • Inui N, Takayama S, Sugimura T (1972) Neoplastic transformation and chromosomal aberrations induced by N-methyl-N-nitro-N-nitrosoguanidine in hamster lung cells in tissue culture. JNCI 48: 1409–1417.

    Google Scholar 

  • Jenkins JR, Rudge K, Currie GA (1984) Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature 312: 651–653.

    PubMed  CAS  Google Scholar 

  • Jones PA, Laug WE, Gardner A, Nye CA, Fink LM, Benedict WF (1976) In vitro correlates of transformation in C3H/10T1 /2 clone 8 mouse cells. Cancer Res 36: 2863–2867.

    PubMed  CAS  Google Scholar 

  • Kaighn ME, Narayan KS, Ohnuki Y, Jones LW, Lechner JF (1980) Differential properties among clones of simian virus 40-transformed human epithelial cells. Carcinogenesis 1: 635–645.

    PubMed  CAS  Google Scholar 

  • Kakunaga T (1978) Neoplastic transformation of human diploid fibroblast cells by chemical carcinogens. Proc Natl Acad Sci USA 75: 1334–1338.

    PubMed  CAS  Google Scholar 

  • Kakunaga T, Crow JD, Hamada H, Hirakawa T, Leavitt J (1983) Mechanisms of neoplastic transformation in human cells. In: Harris CC, Autrup H (eds) Human carcinogenesis. Academic, New York, p 371

    Google Scholar 

  • Kamahora J, Kakunaga T (1967) Malignant transformation of hamster embryonic cells in vitro by 4-nitroquinoline-l-oxide. Biken J 10: 219–242.

    PubMed  CAS  Google Scholar 

  • Kaneda Y, Uchida T, Kim J, Ishiura M, Okada Y (1987) The improved efficient method for introducing macromolecules into cells using HVJ ( Sendai virus) liposomes with gangliosides. Exjptl Cell Res 173: 56–69.

    Google Scholar 

  • Katoh Y, Kazuo U, Shozo T (1982) Induction of anchorage-independent growth of normal fibroblasts by growth factors. Proc Jpn Acad 58 (B): 83.

    Google Scholar 

  • Katz E, Carter BJ (1986) A mutant cell line derived from NIH/3T3 cells: two oncogenes required for in vitro transformation. JNCI 77: 909–914.

    Google Scholar 

  • Kawai S, Nishizawa M (1984) New procedure for DNA transfection with polycation and dimethylsulfoxide. Mol Cell Biol 4: 1172–1174.

    PubMed  CAS  Google Scholar 

  • Kawamura H, Strickland JE, Yuspa SH (1985) Association of resistance to terminal differentiation with initiation of carcinogenesis in adult mouse epidermal cells. Cancer Res 45: 2748–2752.

    PubMed  CAS  Google Scholar 

  • Keath EJ, Caimi PG, Cole MD (1984) Fibroblast lines expressing activated c-myconcogenes are tumorigenic in nude mice and syngeneic animals. Cell 39: 339–348.

    PubMed  CAS  Google Scholar 

  • Kelekar A, Cole MD (1986) Tumorigenicity of fibroblast lines expressing the adenovirus El a, cellular p53, or normal c-mycgenes. Mol Cell Biol 6: 7–14.

    PubMed  CAS  Google Scholar 

  • Kelekar A, Cole MD (1987) Immortalization by c-myc, H-ras and El a oncogenes induces differential cellular gene expression and growth factor responses. Mol Cell Biol 7: 3899–3907.

    Google Scholar 

  • Kennedy AR, Little JB (1978) Protease inhibitors suppress radiation-induced malignant transformation in vitro. Nature 276: 825–826.

    PubMed  CAS  Google Scholar 

  • Kennedy AR, Little JB (1980) Investigation of the mechanism for enhancement of radiation transformation in vitro by 12-O-tetradecanoylphorbol-13-acetate. Carcinogenesis 1: 1039–1047.

    PubMed  CAS  Google Scholar 

  • Kennedy AR, Fox M, Murphy G, Little JB (1980) Relationship between x-ray exposure and malignant transformation in C3H 10T 1/2 cells. Proc Natl Acad Sci USA 77: 7262–7266.

    PubMed  CAS  Google Scholar 

  • Kennedy AR, Cairns J, Little JB (1984) Timing of the steps in transformation of C3H 10T 1 /2 cells by x-irradiation. Nature 307: 85–86.

    PubMed  CAS  Google Scholar 

  • Kilkenny AE, Morgan D, Spangler EF, Yuspa SH (1985) Correlation of initiating potency of skin carcinogens with potency to induce resistance to terminal differentiation in cultured mouse keratinocytes. Cancer Res 45: 2219–2225.

    PubMed  CAS  Google Scholar 

  • Kinosita K Jr, Tsong TY (1977 a) Voltage-induced pore formation and hemolysis of human erythrocytes. Biochim Biophys Acta 471: 227–242.

    Google Scholar 

  • Kinosita K Jr, Tsong TY (1977 b) Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268: 438–441.

    Google Scholar 

  • Kleinsek DA, Smith JR (1987) Construction of a cDNA library from senescent human diploid fibroblast cells in culture. In Vitro 23: 13A.

    Google Scholar 

  • Knowles MA (1979) Effects of the tumor-promoting agent 12-O-tetradecanoylphorbol-13- acetate on normal and “preneoplastic” mouse submandibular gland epithelial cells in vitro. JNCI 62: 349–352.

    Google Scholar 

  • Knowles MA, Franks LM (1977) Stages in neoplastic transformation of adult epithelial cells by 7,12-dimethylbenz(a)anthracene in vitro. Cancer Res 37: 3917–3924.

    PubMed  CAS  Google Scholar 

  • Knowles MA, Franks LM (1978) Ultrastructure and biological markers of neoplastic change in adult mouse epithelial cells transformed in vitro. Br J Cancer 37: 603–611.

    PubMed  CAS  Google Scholar 

  • Knowles MA, Jani H (1986) Multistage transformation of cultured rat urothelium: the effects of N-methyl-N-nitrosourea, sodium saccharin, sodium cyclamate and 12-0- tetradecanoylphorbol-13-acetate. Carcinogenesis 7: 2059–2065.

    PubMed  CAS  Google Scholar 

  • Knowles MA, Jani H, Hicks RM, Berry RJ (1985) N-Methyl-N-nitrosourea induces dysplasia and cell surface markers of neoplasia in long-term rat bladder organ cultures. Carcinogenesis 6: 1047–1054.

    Google Scholar 

  • Knowles MA, Summerhayes IC, Hicks RM ( 1986 a) Carcinogenesis studies using cultured rat and mouse bladder. In: Webber MM, Sekely L (eds) In vitro models for cancer research. CRC Press, Boca Raton, p 127.

    Google Scholar 

  • Knowles MA, Jani H, Hicks RM (1986 b) Induction of morphological changes in the urothelium of cultured adult rat bladder by sodium saccharin and sodium cyclamate. Carcinogenesis 7: 767–774.

    Google Scholar 

  • Knowles MA, Edymann ME, Proctor A, Padua RA, Roberts J (1987) N-Methyl-N-nitrosourea-induced transformation of rat urothelial cells in vitro is not mediated by activation of ras oncogenes. Oncogene 1: 143–148.

    Google Scholar 

  • Knudson AG Jr (1983) Model hereditary cancers of man. Prog Nucleic Acid Res Mol Biol 29: 17–25.

    PubMed  CAS  Google Scholar 

  • Knudson AG Jr (1985) Hereditary cancer oncogenes and antioncogenes. Cancer Res 45: 1437–1443.

    PubMed  CAS  Google Scholar 

  • Koi M, Barrett JC (1986) Loss of tumor-suppressive function during chemically induced neoplastic progression of Syrian hamster embryo cells. Proc Natl Acad Sci USA 83: 5992–5996.

    PubMed  CAS  Google Scholar 

  • Kok K, Osinga J, Carritt B, Davis MB, van der Hout AH, van der Veen AY, Landsvater RM, de Leij LFMH, Berendsen HH, Postmus PE, Poppema S, Buys CHCM (1987) Deletion of a DNA sequence at the chromosomal region 3p 21 in all major types of lung cancer. Nature 330: 578–584.

    CAS  Google Scholar 

  • Kouri RE, Kurtz SA, Price PJ, Benedict WF (1975) 1β-D-Arabinofuranosylcytosine- induced malignant transformation of hamster and rat cells in culture. Cancer Res 35: 2413–2419.

    Google Scholar 

  • Kudo A, Yamamoto F, Furusawa M, Kuroiwa A, Natori S, Obinata M (1982) Structure of thymidine kinase gene introduced into mouse ltk– cells by a new injection method. Gene 19: 11–19.

    PubMed  CAS  Google Scholar 

  • Kulesz-Martin MF, Koehler B, Hennings H, Yuspa SH (1980) Quantitative assay for carcinogen altered differentiation in mouse epidermal cells. Carcinogenesis 1: 995–1006.

    PubMed  CAS  Google Scholar 

  • Kulesz-Martin M, Kilkenny AE, Holbrook KA, Digernes V, Yuspa SH (1983) Properties of carcinogen altered mouse epidermal cells resistant to calcium-induced terminal differentiation. Carcinogenesis 4: 1367–1377.

    PubMed  CAS  Google Scholar 

  • Kulesz-Martin MF, Yoshida MA, Prestine LA, Yuspa SH, Bertram JS (1985) Mouse cell clones for improved quantitation of carcinogen-induced altered differentiation. Carcinogenesis 6: 1245–1254.

    PubMed  CAS  Google Scholar 

  • Kurata S-I, Tsukakoshi M, Kasuya T, Ikawa Y (1986) The laser method for efficient introduction of foreign DNA into cultured cells. Exptl Cell Res 162: 372–378.

    PubMed  CAS  Google Scholar 

  • Land H, Parada LF, Weinberg RA (1983) Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304: 596–602.

    PubMed  CAS  Google Scholar 

  • Land H, Chen AC, Morgenstern JP, Parada LF, Weinberg RA (1986) Behaviour of myc and ras oncogenes in transformation of rat embryo fibroblasts. Mol Cell Biol 6: 1917–1925

    PubMed  CAS  Google Scholar 

  • Lasnitzki I (1968) The effect of a hydrocarbon-enriched fraction of cigarette smoke condensate on human fetal lung grown in vitro. Cancer Res 28: 510–516.

    PubMed  CAS  Google Scholar 

  • Lechner JF, Tokiwa T, LaVeck M, Benedict WF, Banks-Schlegel S, Yeager H Jr, Banerjee A, Harris CC (1985) Asbestos-associated chromosomal changes in human mesothelial cells. Proc Natl Acad Sci USA 82: 3884–3888.

    PubMed  CAS  Google Scholar 

  • Lee WMF, Schwab M, Westaway D, Varmus HE (1985) Augmented expression of normal c-myc is sufficient for cotransformation of rat embryo cells with a mutant rcis gene. Mol Cell Biol 5: 3345–3356

    PubMed  CAS  Google Scholar 

  • Lewis WH, Srinivasan PR, Stokoe N, Siminovitch L (1980) Parameters governing the transfer of the genes for thymidine kinase and dihydrofolate reductase into mouse cells using metaphase chromosomes or DNA. Somatic Cell Genet 6: 333–348.

    PubMed  CAS  Google Scholar 

  • Loo DT, Fuquay JI, Rawson CL, Barnes DW (1987) Extended culture of mouse embryo cells without senescence: inhibition by serum. Science 236: 200–202.

    PubMed  CAS  Google Scholar 

  • Lowy DR, Rands E, Scolnick EM (1978) Helper-independent transformation by unintegrated Harvey sarcoma virus DNA. J Virol 26: 291–298.

    PubMed  CAS  Google Scholar 

  • Lumpkin CK, McClung JK, Pereira-Smith OM, Smith JR (1986) Existence of high abundance antiproliferative mRNAs in senescent human diploid fibroblasts. Science 232: 393–395.

    Google Scholar 

  • Luthman H, Magnosson G (1983) High efficiency polyoma DNA transfection of chloroquine treated cells. Nucleic Acids Res 11: 1295–1308.

    PubMed  CAS  Google Scholar 

  • Maher VM, Rowan LA, Silinskas KC, Kateley SA, McCormick J J (1982) Frequency of UV-induced neoplastic transformation of diploid human fibroblasts is higher in xeroderma pigmentosum cells than in normal cells. Proc Natl Acad Sci USA 79: 2613–2617.

    PubMed  CAS  Google Scholar 

  • Manoharan TH, Burgess I A, Ho D, Newell CL, Fahl WE (1985) Integration of a mutant c-Ha-ras oncogene into C3H/10T1/2 cells and its relationship to tumorigenic transformation. Carcinogenesis 6: 1295–1301.

    PubMed  CAS  Google Scholar 

  • Marchok AC, Huang SF, Martin DH (1984) selection of carcinogen-altered rat tracheal epithelial cells preexposed to 7,12-dimethylbenz(a)anthracene by their loss of a need for pyruvate to survive in culture. Carcinogenesis 5: 789–796.

    Google Scholar 

  • Markovits P, Coppey J, Papadopoulo D, Mazabraud A, Hubert-Habart M (1974) Transformation maligne de cellules d’embryon de hamster en culture par la dimethyl-7,10- benzo(c)acridine. Int J Cancer 14: 215–225.

    PubMed  CAS  Google Scholar 

  • Marshall CJ, Sager R (1981) Genetic analysis of tumorigenesis. IX. Suppression of anchorage independence in hybrids between transformed hamster cell lines. Somat Cell Genet 7: 713–723.

    Google Scholar 

  • Martin-Zanca D, Hughes SH, Barbacid M (1986) A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature 319: 743–748.

    PubMed  CAS  Google Scholar 

  • Mass MJ, Nettesheim P, Gray TE, Barrett JC (1984 a) The effects of 12-O- tetradecanoylphorbol-13-acetate and other tumor promoters on the colony formation of rat tracheal epithelial cells in culture. Carcinogenesis 5: 1597–1601.

    Google Scholar 

  • Mass MJ, Nettesheim P, Beeman DK, Barrett JC (1984 b) Inhibition of transformation of primary rat tracheal epithelial cells by retinoic acid. Cancer Res 44: 5688–5691.

    Google Scholar 

  • Masui T, Wakefield LM, Lechner JF, Laveck MA, Sporn MB, Harris CC (1986) Type p transforming growth factor is the primary differentiation-inducing serum factor for normal human bronchial epithelial cells. Proc Natl Acad Sci USA 83: 2438–2442.

    PubMed  CAS  Google Scholar 

  • McCormick JJ, Kately-Kohler S, Maher VM (1985) Factors involved in quantitating induction of anchorage independence in diploid human fibroblasts by carcinogens. In: Barrett JC, Tennant RW (eds) Carcinogenesis - a comprehensive survey. Raven, New York, p 233

    Google Scholar 

  • Meyn MS, Rossman T, Troll W (1977) A protease inhibitor blocks SOS functions in Escherichia coli: antipain prevents lambda repressor inactivation, ultraviolet mutagenesis and filamentous growth. Proc Natl Acad Sci USA 74: 1152–1156.

    PubMed  CAS  Google Scholar 

  • Miller DA, Jolly DJ, Friedmann T, Verma IM (1983) A transmissable retrovirus expressing human HPRT: gene transfer into cells obtained from humans deficient in HPRT. Proc Natl Acad Sci USA 80: 4709–4713.

    PubMed  CAS  Google Scholar 

  • Miller G, Lisco H, Kohn HT, Stitt D (1971) Establishment of cell lines from normal adult human blood leukocytes by exposure to Epstein-Barr virus and neutralization by human sera with Epstein-Barr virus antibody. Proc Soc Exp Biol Med 137: 1459–1465.

    PubMed  CAS  Google Scholar 

  • Milo GE, DiPaolo J A (1978) Neoplastic transformation of human diploid cells in vitro after chemical carcinogen treatment. Nature 275: 130–132.

    PubMed  CAS  Google Scholar 

  • Milo GE, Noyes I, Donahoe J, Weisbrode S (1981) Neoplastic transformation of human epithelial cells in vitro after exposure to chemical carcinogens. Cancer Res 41: 5096–5102.

    PubMed  CAS  Google Scholar 

  • Mishra NK, Di Mayorca G (1974) In vitro malignant transformation of cells by chemical carcinogens. Biochim Biophys Acta 355: 205–219.

    PubMed  CAS  Google Scholar 

  • Mondal S, Heidelberger C (1970) In vitro malignant transformation by methyl-cholanthrene of the progeny of single cells derived from C3H mouse prostate. Proc Natl Acad Sci USA 65: 219–225.

    PubMed  CAS  Google Scholar 

  • Morgan TL, Maher VM, McCormick J J (1986) Optimal parameters for the polybrene- induced DNA transfection of diploid human fibroblasts. In Vitro Cell Develop Biol 22: 317–319.

    Google Scholar 

  • Namba M, Nishitani K, Hyodoh F, Fukushima F, Kimoto T (1985) Neoplastic trans-formation of human diploid fibroblasts (KMST-6) by treatment with SoCo gamma rays. Int J Cancer 35: 275–280.

    Google Scholar 

  • Nettesheim P, Barrett JC (1984) Tracheal epithelial cell transformation: a model system for studies on neoplastic progression. In: Goldberg L (ed) CRC Crit Rev Toxicol vol 12. CRC Press, Boca Raton, p 215

    Google Scholar 

  • Nettesheim P, Barrett JC (1985) In vitro transformation of rat tracheal epithelial cells: a model for the study of multistage carcinogenesis. In: Barrett JC, Tennant RW (eds) Carcinogenesis, vol 9. Raven, New York, p 283.

    Google Scholar 

  • Nettesheim P, Barrett JC, Mass MK, Steele V, Gray TE (1984) Studies on the action of tumor promoter and antipromoters on respiratory tract epithelium. In: Borzonsonyi M, Day NE, Lapis K, Yamasaki H (eds) Models, mechanisms and etiology of tumor promoters. I ARC Sci Publ no 56, Lyon, p 109.

    Google Scholar 

  • Nettesheim P, Gray T, Barrett JC (1985) The toxic response of preneoplastic rat tracheal epithelial cells to 12-O-tetradecanoylphorbol-13-acetate. Carcinogenesis 6: 1427–1434.

    PubMed  CAS  Google Scholar 

  • Newbold RF, Overell RW (1983) Fibroblast immortality is a prerequisite for transformation by EJE-Haras oncogene. Nature 304: 648–651.

    PubMed  CAS  Google Scholar 

  • Newbold RF, Overell RW, Connell JR (1982) Induction of immortality is an early event in malignant transformation of mammalian cells by carcinogens. Nature 299: 633–635.

    PubMed  CAS  Google Scholar 

  • Nicholson L, Jani H (1988) Effects of sodium cyclamate and sodium saccharin on focus induction in explant cultures of rat bladder. Int J Cancer 42: 295–298.

    PubMed  CAS  Google Scholar 

  • O’Brien W, Stenman G, Sager R (1986) Suppression of tumor growth by senescence in virally transformed human fibroblasts. Proc Natl Acad Sci USA 83: 8659–8663.

    PubMed  Google Scholar 

  • Ochiya T, Fujiyama A, Fukushige S, Hatada I, Matsubara K (1986) Molecular cloning of an oncogene from a human hepatocellular carcinoma. Proc Natl Acad Sci USA 83: 4993–4997.

    PubMed  CAS  Google Scholar 

  • Orly J, Sato G, Erickson G (1980) Serum suppresses the expression of hormonally induced functions in cultured granulosa cells. Cell 20: 817–827.

    PubMed  CAS  Google Scholar 

  • Oshimura M, Barrett JC (1986) Chemically induced aneuploidy in mammalian cells: mechanisms and biological significance in cancer. Environment Mutag 8: 129–159.

    CAS  Google Scholar 

  • Oshimura M, Gilmer TM, Barrett JC (1985) Nonrandom loss of chromosome 15 in Syrian hamster tumours induced by v-Ha-ras plus v-myc oncogenes. Nature 316: 636–639.

    PubMed  CAS  Google Scholar 

  • Oshimura M, Koi M, Ozawa N, Sugawara O, Lamb PW, Barrett JC (1988) Role of chromosome loss in ras/myc-induced Syrian hamster tumors. Cancer Res 48: 1623–1632.

    PubMed  CAS  Google Scholar 

  • Packer L, Fuehr K (1977) Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature 267: 423–425.

    PubMed  CAS  Google Scholar 

  • Padmanabhan R, Howard TH, Howard BH (1987) Specific growth inhibitory sequences in genomic DNA from quiescent human embryo fibroblasts. Mol Cell Biol 7: 1894–1899.

    PubMed  CAS  Google Scholar 

  • Pai SB, Stelle VE, Nettesheim P (1983) Neoplastic transformation of primary tracheal epithelial cell cultures. Carcinogenesis 4: 369–374.

    PubMed  CAS  Google Scholar 

  • Parada LF, Land H, Weinberg RA, Wolf D, Rotter V (1984) Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature 312: 649–651.

    PubMed  CAS  Google Scholar 

  • Parker BA, Stark GR (1979) Regulation of simian virus 40 transcription: sensitive analysis of the RNA species present early in infections by virus or viral DNA. J Virol 31: 360–369.

    PubMed  CAS  Google Scholar 

  • Parkinson EK, Grabham P, Emmerson A (1983) A subpopulation of cultured human keratinocytes which is resistant to the induction of terminal differentiation-related changes by phorbol, 12-myristate, 13-acetate: evidence for an increase in the resistant population following transformation. Carcinogenesis 4: 857–861.

    PubMed  CAS  Google Scholar 

  • Parsa I, Marsh WH, Sutton AL (1981a) An in vitro model for human pancreas carcinogenesis. Cancer 47: 1543–1551.

    PubMed  CAS  Google Scholar 

  • Parsa I, Marsh WH, Sutton AL, Butt KMH (1981 b) Effects of dimethylnitrosamine on organ-cultured adult human pancreas. Am J Pathol 102: 403–411.

    Google Scholar 

  • Parsa I, Bloomfleld RD, Foye CA, Sutton AL (1984) Methylnitrosourea-induced carcinoma in organ-cultured fetal human pancreas. Cancer Res 44: 3530–3538.

    PubMed  CAS  Google Scholar 

  • Peehl DM, Stanbridge EJ (1981) Anchorage-independent growth of normal human fibroblasts. Proc Natl Acad Sci USA 78: 3053–3057.

    PubMed  CAS  Google Scholar 

  • Pera MF, Gorman PA (1984) In vitro analysis of multistage epidermal carcinogenesis: development of indefinite renewal capacity and reduced growth factor requirements in colony-forming keratinocytes precedes malignant transformation. Carcinogenesis 5: 671–682.

    PubMed  CAS  Google Scholar 

  • Pereira-Smith, OM,Smith JR (1988) Genetic analysis of indefinite division in human cells: identification of four complementation groups. Proc Natl Acad Sci USA 85: 6042–6046.

    Google Scholar 

  • Pereira-Smith OM, Smith JR (1983) Evidence for the recessive nature of cellular immortality. Nature 221: 964–966.

    CAS  Google Scholar 

  • Pereira-Smith OM, Fisher SF, Smith JR (1985) Senescent and quiescent cell inhibitors of DNA synthesis: membrane-associated proteins. Exp Cell Res 160: 297–306.

    PubMed  CAS  Google Scholar 

  • Quintanilla M, Brown K, Ramsden M, Balmain A (1986) Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature 322: 78–80.

    PubMed  CAS  Google Scholar 

  • Rassoulzadegan M, Binetruy B, Cuzin F (1982) High frequency of gene transfer after fusion between bacteria and eukaryotic cells. Nature 295: 257–259.

    PubMed  CAS  Google Scholar 

  • Rassoulzadegan M, Naghashfar Z, Cowie A, Carr A, Grisoni M, Kamen R, Cuzin F (1983) Expression of the large T protein of polyoma virus promotes the establishment in culture of “normal” fibroblast cell lines. Proc Natl Acad Sci USA 80: 4354–4358.

    PubMed  CAS  Google Scholar 

  • Reznikoff CA, Brankow DW, Heidelberger C (1973 a) Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to post confluence inhibition of division. Cancer Res 33: 3231–3238.

    Google Scholar 

  • Reznikoff CA, Bertram JS, Brankow DW, Heidelberger C (1973 b) Quantitative and qualitative studies of chemical transformation of cloned C3H mouse embryo cells sensitive to post confluence inhibition of cell division. Cancer Res 33: 3239–3249.

    Google Scholar 

  • Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinising colonies from single cells. Cell 6: 331–343.

    PubMed  CAS  Google Scholar 

  • Rhim JS, Kim CM, Arnstein P, Huebner RJ, Weisburger EK, Nelson-Rees WA (1975) Transformation of human osteosarcoma cells by a chemical carcinogen. JNCI 55: 1291–1294.

    Google Scholar 

  • Rhim JS, Putman DL, Arnstein P, Huebner RJ, McAllister RM (1977) Characterization of human cells transformed in vitro by N-methyl-N-nitro-N-nitrosoguanidine. Int J Cancer 19: 505–510.

    PubMed  CAS  Google Scholar 

  • Rhim JS, Jay G, Arnstein P, Price FM, Sanford KK, Aaronson SA (1985) Neoplastic transformation of human epidermal keratinocytes by AD12-SV40 and Kirsten sarcoma viruses. Science 227: 1250–1252.

    PubMed  CAS  Google Scholar 

  • Rhim JS, Fujita J, Arnstein P, Aaronson SA (1986) Neoplastic conversion of human keratinocytes by adenovirus 12-SV40 virus and chemical carcinogens. Science 232: 385–388.

    PubMed  CAS  Google Scholar 

  • Ruley HE (1983) Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304: 602–606.

    PubMed  CAS  Google Scholar 

  • Ruley HE, Moomaw JF, Maruyama K (1984) Avian myelocytomatosis virus myc and adenovirus early region 1A promote the in vitro establishment of cultured primary cells. In: Vande Woude GF, Levine AJ, Topp WC, Watson JD (eds) Cancer cells 2. Cold Spring Harbor, New York, p 481.

    Google Scholar 

  • Ruley HE, Moomaw J, Chang C, Garrels JI, Furth M, Franza BR (1985) Multistep trans-formation of an established cell line by the adenovirus El A and T24 Ha-ras-1 genes. Cancer Cells 3: 257–264.

    Google Scholar 

  • Sack GH (1981) Human cell transformation by simian virus 40 - a review. In Vitro 17: 1–19.

    Google Scholar 

  • Sager R (1985) Genetic suppression of tumor formation. Adv Cancer Res 44: 43–68.

    PubMed  CAS  Google Scholar 

  • Sager R (1986) Genetic suppression of tumour formation: a new frontier in cancer research. Cancer Res 46: 1573–1580.

    PubMed  CAS  Google Scholar 

  • Sager R, Kovac PE (1978) Genetic analysis of tumorigenesis. I. Expression of tumor-forming ability in hamster hybrid cell lines. Somat Cell Genet 4: 375–392.

    Google Scholar 

  • Sager R, Tanaka K, Lau CC, Ebina Y, Anisowicz A (1983) Resistance of human cells to tumorigenesis induced by cloned transforming genes. Proc Natl Acad Sci USA 80: 7601–7605.

    PubMed  CAS  Google Scholar 

  • Sakamoto H, Mori M, Taira M, Yoshida T, Matsukawa S, Shimizu K, Sekiguchi M, Terada M, Sugimura T (1986) Transforming gene from human stomach cancers and a non-cancerous portion of stomach mucosa. Proc Natl Acad Sci USA 83: 3997–4001.

    PubMed  CAS  Google Scholar 

  • Salmon SE (1980) Cloning of human tumor stem cells. Liss, New York Sanders FK, Burford BO (1967) Morphological conversion of cells in vitro by N-nitrosomethylurea. Nature 213: 1171–1173.

    Google Scholar 

  • Sanford KK (1974) Biologic manifestations of oncogenesis in vitro: a critique. JNCI 53: 1481–1485.

    Google Scholar 

  • Sato H, Kuroki T (1966) Malignization in vitro of hamster embryonic cells by chemical carcinogens. Proc Jpn Acad 42: 1211–1216.

    CAS  Google Scholar 

  • Schaeffer-Ridder M, Wang Y, Hofschneider PH (1981) Liposomes as gene carriers: efficient transformation of mouse L cells by thymidine kinase gene. Science 215: 166–168.

    Google Scholar 

  • Schell K, Lane WT, Casey MJ, Huebner RJ (1966) Potentiation of oncogenicity of adenovirus type 12 grown in African green monkey kidney cell cultures preinfected with SV40 virus: persistence of both T antigens in the tumors and evidence for possible hybridization. Proc Natl Acad Sci USA 55: 81–88.

    PubMed  CAS  Google Scholar 

  • Schwab M, Varmus HE, Bishop JM (1985) Human N-mvc gene contributes to neoplastic transformation of mammalian cells in culture. Nature 316: 160–162.

    PubMed  CAS  Google Scholar 

  • Shabad LM, Kolesnichenko TS, Golub NI (1975) The effect produced by some carcinogenic nitrosocompounds on organ cultures from human lung and kidney tissues. IntJ Cancer 16: 768–778.

    CAS  Google Scholar 

  • Shen YM, Hirshhorn RR, Mercer WE, Surmacz E, Tsutsui Y, Soprano K, Baserga R (1982) Gene transfer: DNA microinjection compared with DNA transfection with a very high efficiency. Mol Cell Biol 2: 1145–1154.

    Google Scholar 

  • Shih C, Shilo B-Z, Goldfarb MP, Dannenberg A, Weinberg RA (1979) Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin. Proc Natl Acad Sci USA 76: 5714–5718.

    PubMed  CAS  Google Scholar 

  • Shih C, Padhy LC, Murray M, Weinberg RA (1981) Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 290: 261–264.

    PubMed  CAS  Google Scholar 

  • Shimizu K, Yoshimichi N, Sekiguchi M, Hokamura K, Tanaka K (1985) Molecular cloning of an activated human oncogene, homologous to v-raf, from primary stomach cancer. Proc Natl Acad Sci USA 82: 5641–5645.

    PubMed  CAS  Google Scholar 

  • Shimotono K, Temin H (1981) Formation of infectious progeny virus after insertion of herpes TK gene into DNA of an avian retrovirus. Cell 26: 67–77.

    Google Scholar 

  • Silinskas KC, Kateley SA, Tower JE, Maher YM, McCormick JJ (1981) Induction of anchorage independent growth in human fibroblasts by propane sultone. Cancer Res 41: 1620–1627.

    PubMed  CAS  Google Scholar 

  • Sina JF, Bradley MO, O’Brien TG (1982) Neoplastic transformation of Syrian hamster epidermal cells in vitro. Cancer Res 42: 4116–4123.

    PubMed  CAS  Google Scholar 

  • Slaga TJ, Viaje A, Bracken WM, Buty SG, Miller DR, Fischer SM, Richter CK, Dumont JN (1978) In vitro transformation of epidermal cells from newborn mice. Cancer Res 38: 2246–2252.

    PubMed  CAS  Google Scholar 

  • Small MB, Gluzman Y, Ozer HL (1982) Enhanced transformation of human fibroblasts by origin-defective simian virus 40. Nature 296: 671–672.

    PubMed  CAS  Google Scholar 

  • Smith BL, Sager R (1982) Multistep origin of tumor-forming ability in Chinese hamster embryo fibroblast cells. Cancer Res 42: 389–396.

    PubMed  CAS  Google Scholar 

  • Spandidos DA, Wilkie NM (1984) Malignant transformation of early passage rodent cells by a single mutated human oncogene. Nature 310: 469–475.

    PubMed  CAS  Google Scholar 

  • Stampfer M, Bartley JC (1985) Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo(a)pyrene. Proc Natl Acad Sci USA 82: 2394–2398.

    PubMed  CAS  Google Scholar 

  • Steele VE, Marchok AC, Nettesheim P (1977) Transformation of tracheal epithelium exposed in vitro to N-methyl-N-nitro-N-mtrosoguanidine ( MNNG ). Int J Cancer 20: 234–238

    Google Scholar 

  • Steele VE, Beeman DK, Nettesheim P (1984) Enhanced induction of the anchorage- independent phenotype in initiated rat-tracheal epithelial cell cultures by the tumor promoter 12-0-tetradecanoylphorbol-l 3-acetate. Cancer Res 44: 5068–5072.

    PubMed  CAS  Google Scholar 

  • Steglich CS, De Mars R (1982) Mutations causing deficiency of APRT in fibroblasts cultured from humans heterozygous for mutant APRT alleles. Somatic Cell Genet 8: 115–141.

    PubMed  CAS  Google Scholar 

  • Steinberg ML, Defendi V (1979) Altered patterns of growth and differentiation in human keratinocytes infected by simian virus 40. Proc Natl Acad Sci USA 76: 331–334.

    Google Scholar 

  • Steinberg ML, Defendi V (1983) Transformation and immortalization of human keratinocytes by SV40. J Invest Dermatol 81: 131s–136s.

    PubMed  CAS  Google Scholar 

  • Stevenson M, Volsky B, Hedenskog M, Yolsky DJ (1986) Immortalization of human T lymphocytes after transfection of Epstein-Barr virus DNA. Science 233: 980–984.

    PubMed  CAS  Google Scholar 

  • Storer RD, Stein RB, Sina JF, DeLuca JG, Allen HL, Bradley MO (1986) Malignant transformation of a preneoplastic hamster epidermal cell line by the EJ c-Ha-ras on-cogene. Cancer Res 46: 1458–1464.

    PubMed  CAS  Google Scholar 

  • Stow ND, Wilkie NM (1976) An improved technique for obtaining enhanced infectivity with herpes simplex type-1 DNA. J Gen Virol 33: 447–4458.

    PubMed  CAS  Google Scholar 

  • Sukumar S, Notario V, Martin-Zanca D, Barbacid M (1983) Induction of mammary carcinomas in rats by nitroso-methylurea involves malignant activation of H-ras-1 locus by single point mutations. Nature 306: 658–661.

    PubMed  CAS  Google Scholar 

  • Summerhayes IC, Franks LM (1979) Effects of donor age on neoplastic transformation of adult mouse bladder epithelium in vitro. JNCI62: 1017–1023.

    Google Scholar 

  • Sun N-C, Sun CRY, Chao L, Fung W-P, Tennant RN, Hsie AW (1981) In vitro transformation of Syrian hamster epidermal cells by N-methyl-N-nitro-N-nitrosoguanidine. Cancer Res 41: 1669–1676.

    PubMed  CAS  Google Scholar 

  • Sutherland BM, Bennett PV (1984) Transformation of human cells by DNA transfection. Cancer Res 44: 2769–2772.

    PubMed  CAS  Google Scholar 

  • Sutherland BM, Cimino JS, Delihas N, Shih AG, Oliver RP (1980) Ultraviolet light- induced transformation of human cells to anchorage-independent growth. Cancer Res 40: 1934–1939.

    PubMed  CAS  Google Scholar 

  • Sutherland BM, Bennett PV, Freeman AG, Moore SP, Strickland PT (1985) Transformation of human cells by DNAs ineffective in transformation of NIH3T3 cells. Proc Natl Acad Sci USA 82: 2399–2403.

    Google Scholar 

  • Swartz JB, Riddiough CR, Epstein SS (1982) Analyses of carcinogenesis dose-response relations with dichotomous data: implications for carcinogenic risk assessment. Teratogen Carcinogen Mutagen 2: 179–204.

    CAS  Google Scholar 

  • Tabin CJ, Hoffman JW, Goff SP, Weinberg RA (1982) Adaptation of a retrovirus as a eukaryotic vector transmitting the herpes simplex virus thymidine kinase gene. Mol Cell Biol 2: 426–436

    PubMed  CAS  Google Scholar 

  • Taylor-Papadimitriou J, Purkis P, Lane EB, McKay IA, Chang SE (1982) Effects of SV40 transformation on the cytoskeleton and behavioural properties of human keratinocytes. Cell Differ 11: 169–180.

    PubMed  CAS  Google Scholar 

  • Terzaghi M, Nettesheim P (1979) Dynamics of neoplastic development in carcinogen-exposed tracheal mucosa. Cancer Res 39: 4003–4010.

    PubMed  CAS  Google Scholar 

  • Terzaghi M, Nettesheim P, Riester L (1982) Effect of carcinogen dose on the dynamics of neoplastic development in rat tracheal epithelium. Cancer Res 42: 4511–4518.

    PubMed  CAS  Google Scholar 

  • Thomassen DG (1986) Role of spontaneous transformation in carcinogenesis: development of preneoplastic rat tracheal epithelial cells at a constant rate. Cancer Res 46: 2344–2348

    PubMed  CAS  Google Scholar 

  • Thomassen DG, Gray TE, Moss MJ, Barrett JC (1983) High frequency of carcinogen- induced, early, preneoplastic changes in rat tracheal epithelial cells in culture. Cancer Res 43: 5956–5963.

    PubMed  CAS  Google Scholar 

  • Thomassen DG, Gilmer TM, Annab LA, Barrett JC (1985 a) Evidence for multiple steps in neoplastic transformation of normal and preneoplastic Syrian hamster embryo cells following transfection with Harvey murine sarcoma virus oncogene (v-Ha-ras). Cancer Res 45: 726–732.

    Google Scholar 

  • Thomassen D, Nettesheim P, Gray TE, Barrett JC (1985 b) Quantitation of the rate of spontaneous generation and carcinogen-induced frequency of anchorage-independent variants of rat tracheal epithelial cells in culture. Cancer Res 45: 1516–1524.

    Google Scholar 

  • Todaro GJ, Aaronson SA (1969) Human cell strains susceptible to focus formation by human adenovirus type 12. Proc Natl Acad Sci USA 61: 1272–1278.

    Google Scholar 

  • Todaro GJ, Green H (1963) Quantitative studies of the growth of mouse embryo cells in culture and their development into established cell lines. J Cell Biol 17: 299–313.

    PubMed  CAS  Google Scholar 

  • Todaro GJ, Green H (1964) Serum albumin supplemented medium for long term cultivation of mammalian fibroblast strains. Proc Soc Exp Biol Med 116: 688–692.

    PubMed  CAS  Google Scholar 

  • Tolsma SS, Thomas E, Bauer KD, Bouck N (1988) Genetic assessment of the strength of a cancer suppressor gene in hamster cells. Cancer Res 48: 46–51.

    PubMed  CAS  Google Scholar 

  • Tsuda H, Inui N, Takayama S (1973) In vitro transformation of newborn hamster cells by sodium nitrite. Biochem Biophys Res Commun 55: 1117–1124.

    PubMed  CAS  Google Scholar 

  • Tsunokawa Y, Esumi H, Sasaki MS, Mori M, Sakamoto H, Terada M, Sugimura T (1984) Integration of v-rasH does not necessarily transform an immortalised murine cell line. Gann 75: 732–736.

    PubMed  CAS  Google Scholar 

  • Yanderlaan M, Steele V, Nettesheim P (1983) Increased DNA content as an early marker of transformation in carcinogen-exposed rat tracheal cell cultures. Carcinogenesis 4: 721–727.

    Google Scholar 

  • Vogt PK (1967) DEAE-dextran: enhancement of cellular transformation induced by avian sarcoma viruses. Virology 33: 175–177.

    PubMed  CAS  Google Scholar 

  • Volsky DJ, Gross T, Sinangil F, Kuszynski C, Bartzatt R, Dambaugh T, Kieff E (1984) Expression of Epstein-Barr virus ( EBV) DNA and cloned DNA fragments in human lymphocytes following Sendai virus envelope-mediated gene transfer. Proc Natl Acad Sci USA 81: 5926–5930.

    Google Scholar 

  • Walker C, Nettesheim P, Barrett JC, Gilmer TM (1987) Expression of a fms-related on-cogene in carcinogen-induced neoplastic epithelial cells. Proc Natl Acad Sci USA 84: 1804–1808.

    PubMed  CAS  Google Scholar 

  • Walker GC (1985) Inducible DNA repair systems. Ann Rev Biochem 54: 425–457.

    PubMed  CAS  Google Scholar 

  • Wei C-M, Gibson M, Spear PG, Scolnick EM (1981) Construction and isolation of a transmissible retrovirus containing the sre gene of Harvey murine sarcoma virus and the thymidine kinase gene of herpes simplex virus type 1. J Virol 39: 935–944.

    PubMed  CAS  Google Scholar 

  • Weinberg RA (1985) The action of oncogenes in the cytoplasm and nucleus. Science 230: 770–776.

    PubMed  CAS  Google Scholar 

  • Weisberger JH, Williams GM (1981) Carcinogen testing: current problems and new approaches. Science 214: 401–407.

    Google Scholar 

  • Weiss R, Teich N, Varmus H, Coffin J (eds) (1982) RNA tumor viruses. Cold Spring Harbor Laboratory, New York Whittaker JL, Byrd PJ, Grand RJA, Gallimore PH (1984) Isolation and characterization of four adenovirus type 12-transformed human embryo kidney cell lines. Mol Cell Biol 4: 110–116.

    Google Scholar 

  • Wigley CB (1979) Transformation in vitro of adult mouse salivary gland epithelium: a system for studies on mechanisms of initiation and promotion. In: Franks LM, Wigley CB (eds) Neoplastic transformation in differentiated epithelial cell systems in vitro. Academic, London

    Google Scholar 

  • Wigley CB (1983) TPA affects early and late stages of chemically induced transformation in mouse submandibular salivary epithelial cells in vitro. Carcinogenesis 4: 101–106.

    PubMed  CAS  Google Scholar 

  • Wigley CB, Carbonell AW (1976) The target cell in chemical induction of carcinomas in mouse submandibular gland. Eur J Cancer 12: 737–741.

    PubMed  CAS  Google Scholar 

  • Williams GM (1976) Primary and long-term culture of adult rat liver epithelial cells. Methods Cell Biol 14: 357–364.

    PubMed  CAS  Google Scholar 

  • Williams GM, Weisburger EK, Weisburger JH (1971) Isolation and long-term cell culture of epithelial-like cells from rat liver. Exptl Cell Res 69: 106–112.

    PubMed  CAS  Google Scholar 

  • Yamamoto F, Furasawa M (1978) A simple microinjection technique not employing a micromanipulator. Exptl Cell Res 117: 441–445.

    PubMed  CAS  Google Scholar 

  • Yamamoto F, Furusawa M, Furusawa I, Obinata M (1982) The pricking method. A new efficient technique for mechanically introducing foreign DNA into the nuclei for culture cells. Exptl Cell Res 142: 79–84.

    Google Scholar 

  • Yancopoulos GD, Nisen PD, Tesfaye A, Kohl NE, Goldfarb MP, Alt FW (1985) N-myc can cooperate with ras to transform normal cells in culture. Proc Natl Acad Sci USA 82: 5455–5459.

    PubMed  CAS  Google Scholar 

  • Yoakum GH, Korba BE, Lechner JF, Tokiwa T, Gazdar AF, Seeley T, Siegel M, Leeman L, Autrup H, Harris CC (1983) High-frequency transfection and cytopathology of the hepatitis B virus core antigen gene in human cells. Science 222: 385–389.

    PubMed  CAS  Google Scholar 

  • Yoakum GH, Lechner JF, Gabrielson EW, Korba BE, Malan-Shibley L, Willey JC, Valerio MG, Shamsuddin AM, Trump BF, Harris CC (1985) Transformation of human bronchial epithelial cells transfected by Harvey ras oncogene. Science 227: 1174–1179.

    PubMed  CAS  Google Scholar 

  • Yuspa SH (1985) Mechanisms of transformation and promotion of mouse epidermal cells. In: Barrett JC, Tennant RW (eds) Carcinogenesis, vol 9. Raven, New York, p 271.

    Google Scholar 

  • Yuspa SH, Harris CC (1974) Altered differentiation of mouse epidermal cells treated with retinyl acetate in vitro. Exptl Cell Res 86: 95–105.

    PubMed  CAS  Google Scholar 

  • Yuspa SH, Morgan DL (1981) Mouse skin cells resistant to terminal differentiation associated with initiation of carcinogenesis. Nature 293: 72–74.

    PubMed  CAS  Google Scholar 

  • Yuspa SH, Lichti U, Ben T, Patterson E, Hennings H, Slaga TJ, Colburn N, Kelsey W (1976 a) Phorbol-ester tumor promoters stimulate DNA synthesis and ornithine decarboxylase activity in mouse epidermal cell cultures. Nature 262: 402–404.

    Google Scholar 

  • Yuspa SH, Hennings H, Dermer P, Michael D (1976 b) Dimethyl sulfoxide-induced enhancement of 7,12-dimethylbenz(a)anthracene metabolism and DNA binding in differentiating mouse epidermal cell cultures. Cancer Res 36: 947–951.

    Google Scholar 

  • Yuspa SH, Hawley-Nelson P, Stanley JR, Hennings H (1980 a) Epidermal cell culture. Transplant Proc [Suppl 1] 12: 114–122.

    Google Scholar 

  • Yuspa SH, Hawley-Nelson P, Koehler B, Stanley JR (1980 b) A survey of transformation markers in differentiating epidermal cell lines in culture. Cancer Res 40: 4694–4703.

    Google Scholar 

  • Yuspa SH, Koehler B, Kulesz-Martin M, Hennings H (1981 a) Clonal growth of mouse epidermal cells in medium with reduced calcium concentration. J Invest Dermatol 76: 144–146.

    Google Scholar 

  • Yuspa SH, Hennings H, Lichti U (1981 b) Initiator and promoter induced specific changes in epidermal function and biological potential. J Supramol Str Biochem 17: 245–257.

    Google Scholar 

  • Yuspa SH, Ben T, Hennings H, Lichti U (1982) Divergent responses in epidermal basal cells exposed to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 42: 2344–2349

    PubMed  CAS  Google Scholar 

  • Yuspa SH, Vass W, Scolnick E (1983) Altered growth and differentiation of cultured mouse epidermal cells infected with oncogenic retrovirus: contrasting effects of viruses and chemicals. Cancer Res 43: 6021–6030.

    PubMed  CAS  Google Scholar 

  • Yuspa SH, Kilkenny AE, Stanley J, Lichti U (1985) Keratinocytes blocked in phorbol ester-responsive early stage of terminal differentiation by sarcoma viruses. Nature 314: 459–462.

    PubMed  CAS  Google Scholar 

  • Yuspa SH, Morgan D, Lichti U, Spangler EF, Michael D, Kilkenny A, Hennings H (1986) Cultivation and characterization of cells derived from mouse skin papillomas induced by an initiation-promotion protocol. Carcinogenesis 7: 949–958.

    PubMed  CAS  Google Scholar 

  • Zarbl H, Sukumar S, Arthur AV, Martin-Zanca D, Barbacid M (1985) Direct mutagenesis of Ha-ras-1 oncogene by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats. Nature 315: 382–386.

    PubMed  CAS  Google Scholar 

  • Zerler B, Moran B, Maruyama K, Moomaw J, Grodzicker T, Ruley HE (1986) Adenovirus El A coding sequences that enable ras and pmt oncogenes to transform cultured primary cells. Mol Cell Biol 6: 887–899.

    PubMed  CAS  Google Scholar 

  • Zimmerman RJ, Little JB (1983) Characteristics of human diploid fibroblasts transformed in vitro by chemical carcinogens. Cancer Res 43: 2183–2189.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Knowles, M.A. (1990). Transformation of Cells in Culture. In: Cooper, C.S., Grover, P.L. (eds) Chemical Carcinogenesis and Mutagenesis I. Handbook of Experimental Pharmacology, vol 94 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74775-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74775-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74777-9

  • Online ISBN: 978-3-642-74775-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics