Skip to main content

NMR Relaxation Footprinting: The [Cr(NH3)6]3+ Cation as a Probe for Drug Binding Sites on Oligonucleotides

  • Conference paper
Ruthenium and Other Non-Platinum Metal Complexes in Cancer Chemotherapy

Part of the book series: Progress in Clinical Biochemistry and Medicine ((PCBM,volume 10))

Abstract

[Cr(NH3)6] (N03)3 was used to probe structural features of the oligonucleotide, d(ATGCdCAT)2 (numbering of strand: 5′ A1T2G3C4G5C6A7T8 3′) and to footprint the binding site of actinomycin D(ActD) in the unique 2:1 ActD/d(ATGCGCAT)2 complex by proton longitudinal relaxation (T1) studies. Longitudinal relaxation rates (1/T1) of the 1H NMR signals were measured before and after the addition of the [Cr(NH3)6]3+ solution to determine the paramagnetic longitudinal relaxation rate (1/T1p = 1/T1(Cr) — l/T1(noCr)). The chromium complex seems to prefer the center of the duplex, since signals for protons on nucleotides in the center of the duplex have the largest 1/T1ps. Larger 1/T′1p values are observed for signals of major groove base protons on G3, C4, G5 and C6 ancfalso for signals of deoxyribose H1′ and H3′ protons which are close to the phosphate backbone (H3′ closer than H1′). We believe that electrostatic forces and hydrogen bonding are the main interactions between the chromium hexaammine cation and d(ATGCGCAT)2. To interpret our data we used distances from computer-generated models for five major binding modes. Four of these involved hydrogen bonding of the ammonia ligands to various sites on the oligonucleotide (phosphate oxygens, base oxygens and base nitrogens). One mode involved the approach of the [Cr(NH3)6]3+ cation into the minor groove of the duplex with no hydrogen bonding. Neither a single binding mode nor an equal weighting of all binding modes appeared to explain the results. Two modes appeared to have the greatest influence. One involved major groove interstrand binding at G3 and G5. The other involved interaction of the cation with a single phosphate group, with all phosphate groups exhibiting this binding mode. Other modes most likely do occur, but from modeling studies these modes appear to be less important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chiao YC, Krugh TR (1977) Biochemistry 16: 747

    Article  PubMed  CAS  Google Scholar 

  2. Tullius TD, Dombrowski BA (1985) Science 230: 679

    Article  PubMed  CAS  Google Scholar 

  3. Fleisher MB, Waterman KC, Turro NJ, Barton JK (1986) Inorg. Chem. 25: 3549

    Article  CAS  Google Scholar 

  4. Kuwabara M, Yoon C, Goyne T, Thederahn T, Sigman DS (1986) Biochemistry 25: 7401

    Article  PubMed  CAS  Google Scholar 

  5. Granot A, Kearns DR (1982) Biopolymers 21: 203

    Article  PubMed  CAS  Google Scholar 

  6. Marzilli LG (1977) Prog. Inorg. Chem. 23: 255

    Article  CAS  Google Scholar 

  7. Derome AE In: Bardwin JE (ed) (1987) Modern NMR techniques for chemistry research. Pergamon, Oxford, p 89

    Google Scholar 

  8. Scott EV, Zon G, Marzilli LG, Wilson WD (1988) Biochemistry 27: 7490

    Google Scholar 

  9. Barton JK (1988) Chemical and Engineering News 66 (39): 30

    Article  CAS  Google Scholar 

  10. Braunlin WH, Anderson CF, Record MT (1987) Biochemistry 26: 7724

    Article  PubMed  CAS  Google Scholar 

  11. Stec WJ, Zon G, Egan W, Byrd RA, Phillips LR, Gallo KA (1985) J. Org. Chem. 50: 3908

    Article  CAS  Google Scholar 

  12. Oppegard AL, Bailar JC (1950) Inorg Syntheses 3: 153

    Article  Google Scholar 

  13. Cutnell JD, Bleich HE, Glasel JA (1976) J. Magn. Reson. 21: 43

    Article  CAS  Google Scholar 

  14. Levy G, Peat I (1975) J. Magn. Reson. 18: 500

    Article  CAS  Google Scholar 

  15. Jones RL, Scott EV, Zon G, Marzilli LG, Wilson WD (1988) Biochemistry 27: 6021

    Article  PubMed  CAS  Google Scholar 

  16. Arnott S, Campbell Smith PJ, Chandrasekaran R (1976) In: Fasman GD (ed) CRC Handbook of biochemistry and molecular biology. CRC, Ohio, p 411

    Google Scholar 

  17. Tran-Dinh S, Neumann J-M, Huynh-Dinh T, Igolen J, Kan SK (1982) Org. Magn. Reson. 18: 148

    Article  CAS  Google Scholar 

  18. Fouts CS (1987) Ph. D. Thesis, Emory University, Atlanta, GA

    Google Scholar 

  19. Wilson WD, Jones RL, Zon G, Scott EV, Banville DL, Marzilli LG (1986) J. Am. Chem. Soc. 108: 7113

    Article  CAS  Google Scholar 

  20. Raymond KN, Meek DW, Ibers JA (1968) Inorg. Chem. 7: 1111

    Article  CAS  Google Scholar 

  21. Gessner RV, Quigley GJ, Wang A, Van der Marel GA, van Boom JH, Rich A (1985) Biochemistry 24: 237

    Article  PubMed  CAS  Google Scholar 

  22. Kopka ML, Yoon C, Goodsell D, Pjura P, Dickerson RE (1985) Proc. Natl. Acad. Sci. USA 82: 1376

    Article  PubMed  CAS  Google Scholar 

  23. Coll M, Frederick CA, Wang A, Rich A (1987) Proc. Natl. Acad. Sci. USA 84: 8385

    Article  CAS  Google Scholar 

  24. Teng M, Usman N, Frederich CA, Wang A (1988) Nucleic Acids Res. 16: 2671

    Article  PubMed  CAS  Google Scholar 

  25. Pjura P, Grzeskowiak K, Dickerson RE (197) J. Mol. Biol. 197: 257

    Article  Google Scholar 

  26. Bloembergen N (1957) J. Chem. Phys. 27: 572

    Article  CAS  Google Scholar 

  27. Solomon I (1955) Phys. Rev. 99: 559

    Article  CAS  Google Scholar 

  28. Values of 1/r6 for each site of modes 1-5 can be found in Scott EV (1988) Ph. D. Thesis, Emory University, Atalnta, GA

    Google Scholar 

  29. Fox KR, Waring MJ (1984) Nucl. Acids Res. 12: 9271

    Article  PubMed  CAS  Google Scholar 

  30. Ascoli F, Branca M, Mancini C, Pispisa B (1972) J. Chem. Soc., Faraday Trans I 68: 1213

    Article  CAS  Google Scholar 

  31. Ascoli F, Branca M, Mancini C, Pispisa B (1973) Biopolymers 12: 2431

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scott, E.V., Zon, G., Marzilli, L.G. (1989). NMR Relaxation Footprinting: The [Cr(NH3)6]3+ Cation as a Probe for Drug Binding Sites on Oligonucleotides. In: Baulieu, E., et al. Ruthenium and Other Non-Platinum Metal Complexes in Cancer Chemotherapy. Progress in Clinical Biochemistry and Medicine, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74760-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74760-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74762-5

  • Online ISBN: 978-3-642-74760-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics