The Fokker-Planck Approximation

  • Wilhelm Brenig


Often one calls kinetic differential equations that are first order in time and second order in some other variable Fokker-Planck equations [36.1,2]. We are going to consider the Fokker-Planck equation in a more restricted sense as an approximation for the collision term.


Transport Equation Diffusion Equation Moment Method Drift Term Collision Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 36.1
    Fokker, AX,.: Ann. Phys. (Leipzig) 43, 810 (1914) Planck, M.: Sitzungsber. Preuss. Akad. Wiss. p. 324 (1917)ADSGoogle Scholar
  2. 36.2
    Haken, H.: Rev. Mod. Phys. 47, 67 (1975)MathSciNetADSCrossRefGoogle Scholar
  3. 36.3
    Chandrasekhar, S.: Rev. Mod. Phys. 15, 1 (1943)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 36.4
    Risken, H.: The Fokker-Planck Equation, 2nd ed., Springer Ser. Synergetics, Vol. 18 ( Springer, Berlin, Heidelberg 1989 )zbMATHCrossRefGoogle Scholar
  5. 36.5
    Kramers, H.A.: Physica 7, 284 (1940)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 36.6
    Moyal, J.E.: J. R. Stat. Soc. London B 11, 150 (1949)MathSciNetzbMATHGoogle Scholar
  7. 36.7
    Pawula, RF.: Phys. Rev. 162, 186 (1967)ADSCrossRefGoogle Scholar
  8. 36.8
    Risken, H., Vollmer, HD.: Z. Phys. B 35, 313 (1979)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Wilhelm Brenig
    • 1
  1. 1.Physik-DepartmentTechnische Universität MünchenGarchingFed. Rep. of Germany

Personalised recommendations