Skip to main content

Strahleninduzierte Aneuploidien beim Säuger

  • Conference paper
Die Wirkung niedriger Strahlendosen
  • 48 Accesses

Zusammenfassung

Numerische Chromosomenanomalien verursachen frühkindlichen Tod, Fehlbildungen und geistige Retardierung, wie z.B. bei den Trisomien 13 (Pätau-Syndrom), 18 (Edwards-Syndrom) und 21 (Down-Syndrom). Auch sind sie für eine spätere Störung der Geschlechtsentwicklung oder für Infertilität, wie beim Turner-Syndrom [45, XO] und beim Klinefelter-Syndrom [47,XXY], verantwortlich [34].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alberman E., PE Polani, JAF Roberts, CC Spicer, M Elliot, E Armstrong: Parental exposure to X-irradiation and Down’s Syndrome. Ann Hum Genet 36, 1972: 195–208

    Article  PubMed  CAS  Google Scholar 

  2. Armbruster de Moraes E: Der Einfluß von Röntgenstrahlen bei der Entstehung von Chromosomenanomalien in Oocyten des Säugers. Dissertation, Universität Würzburg, 1983

    Google Scholar 

  3. Boer de P, AD Tates: Radiation-induced nondisjunction. In: Ishihara T, M Sasaki (eds) Radiation-induced chromosome damage in man. A. Liss, New York, 1983: pp 299–325

    Google Scholar 

  4. Bond DJ, AC Chandley: Aneuploidy, Oxford Monographs on Medical Genetics, 11, Oxford University Press, Oxford, 1983

    Google Scholar 

  5. Brandriff B, L Gordon, L Ashworth, G Watchmaker, D Moore, AJ Wyrobek, AV Carrano: Chromosomes of human sperm: Variability among normal individuals. Hum Genet 70, 1985: 18–24

    Article  PubMed  CAS  Google Scholar 

  6. Carter CO, KA Evans, AM Stewart: Maternal radiation and Down’s Syndrome (Mongolism). Lancet II, 1961: 1042

    Article  Google Scholar 

  7. Cavanee WK, TP Dryja, RA Philips, WF Benedict, R Gogbout, BL Gallie, AL Murphree, LC Strong, RL White: Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305, 1985: 779–784

    Article  Google Scholar 

  8. Chandley AC, RM Speed: Testing for nondisjunction in the mouse. Environ Health Perspect 31, 1979: 123

    Article  PubMed  CAS  Google Scholar 

  9. Cohen BH, AM Lilienfeld, S Kramer, LC Hyman: Parental factors in Down’s Syndrome. Results of the second Baltimore Case-Control Study. In: Hook EB, IH Porter (eds) Population Cytogenetics: Studies in humans. Academic Press, New York, 1977: pp 301–352

    Google Scholar 

  10. Edwards JH, DG Harnden: Down’s Syndrome in Kerala. Nature 267, 1977: 728–729

    Article  Google Scholar 

  11. Gosden RG: Biology of menopause. The causes and consequences of ovarian ageing. Academic Press, New York, 1985

    Google Scholar 

  12. Hansmann I: Factors and mechanisms involved in nondisjunction and X-chromosome loss. In: Sandberg A (ed) Cytogenetics of the mammalian X-chromosome. Part A, A Liss, New York, 1983: pp 131–170

    Google Scholar 

  13. Hansmann I, HD Probeck: The induction of nondisjunction by irradiation in mammalian oogenesis and spermatogenesis. Mutat Res 61, 1979: 69–76

    Article  PubMed  CAS  Google Scholar 

  14. Hansmann I, J Jenderny, HD Probeck: Nondisjunction and chromosome breakage in mouse oocytes after various X-ray doses. Hum Genet 61, 1982: 190–192

    Article  PubMed  CAS  Google Scholar 

  15. Hansmann I, J Jenderny, HD Probeck: Low doses of X-rays decrease the risk of diploidy in mouse oocytes. Mutat Res 109, 1983: 99–110

    Article  PubMed  CAS  Google Scholar 

  16. Hansmann I, R Zmarsly, HD Probeck, J Jenderny, J Schäfer: Aneuploidy in mouse foetuses after paternal exposure to X-rays. Nature 280, 1979: 228

    Article  PubMed  CAS  Google Scholar 

  17. Hansmann I, I Bartels, F Beermann, D Caspari, U Franke, E Hummler, F Theuring: Mechanisms of nondisjunction: Facts and perspectives. In: Dellarco VL, PE Voytek, A Hollaender (eds) Aneuploidy. Etiology and mechanisms. Plenum Press, New York, 1985: pp 417–432

    Google Scholar 

  18. Hassold T, D Chiu, JA Yamane: Parental origin of autosomal trisomies. Ann Hum Genet 48, 1984: 129–144

    Article  PubMed  CAS  Google Scholar 

  19. Juberg RC, PN Mowrey: Origin of nondisjunction in trisomy 21 syndrome: All studies compiled, parental age analysis and international comparisons. Am J Med Genet 16, 1983: 111–116

    Article  PubMed  CAS  Google Scholar 

  20. Kamiguchi Y, K Mikamo: An improved, efficient method for analysing human sperm chromosomes using zona-free hamster ova. Am J Hum Genet 38, 1986: 724–740

    PubMed  CAS  Google Scholar 

  21. Kochupillai N, IC Verma, MS Grewal, V Ramalingaswamij: Down’s Syndrome and related abnormalities in an area of high background-radiation in coastal Kerala. Nature 262, 1976: 60–61

    Article  PubMed  CAS  Google Scholar 

  22. Lunn JE: A survey of mongoloid children in Glasgow. Scot Med J 4, 1959: 368–372

    PubMed  CAS  Google Scholar 

  23. Marmol JG, AL Scriggins, RF Vollman: Mothers of mongoloid infants in the collaborative project. Am J Obstet Gynecol 104, 1969: 533–543

    PubMed  CAS  Google Scholar 

  24. Martin RH: Chromosomal abnormalities in human sperm. In: Dellarco VL, PE Voytek, A Hollaender (eds): Aneuploidy. Etiology and mechanisms. Plenum Press, New York, 1985: 91–102

    Google Scholar 

  25. Martin RH, W Balkan, K Burns, AW Rademaker, CC Lin, NL Rudd: The chromosome constitution of 1000 human spermatozoa. Hum Genet 63, 1983: 305–309

    Article  PubMed  CAS  Google Scholar 

  26. Max C: Cytological investigation of embryos in low-dose X-irradiated young and old female inbred mice. Hereditas 85, 1977: 199–206

    Article  PubMed  CAS  Google Scholar 

  27. Mikamo K: Cytogenetic effects of radiation on developing ovarian oocytes. Proc Jpn Acad 82, 1980: 174

    Google Scholar 

  28. Niijhoff JH, P de Boer: Radiation-induced meiotic autosomal non-disjunction in male mice. The effects of low doses of fission neutrons and X-rays in meiosis I and II of a Robertsonian translocation heterozygote. Mutat Res 72, 1980: 431–446

    Article  Google Scholar 

  29. Reichert W, I Hansmann, G Röhrborn: Chromosome anomalies in mouse oocytes after irradiation. Hum Genet 28, 1975: 25–38

    Article  CAS  Google Scholar 

  30. Russell LB: The use of X-chromosome anomalies for measuring radiation effects in different germ cell stages of the mouse. In: Effects of radiation on meiotic systems. IAEA, Wien 1968: 27–41

    Google Scholar 

  31. Russell LB, CS Montgomery: The incidence of sex-chromosome anomalies following irradiation of mouse spermatogonia with single or fractionated doses of X-rays. Mutat Res 25, 1974: 367–376

    Article  PubMed  CAS  Google Scholar 

  32. Russell LB, CL Saylors: The relative sensitivity of various germ cell stages of the mouse to radiation-induced non-disjunction, chromosome loss and deficiencies. In: Sobels FH (ed) Repair from genetic radiation damage. Pergamon Press, Oxford, 1963: 313

    Google Scholar 

  33. Sankaranarayanan K: Genetic effects of ionizing radiation in multicellular eukaryotes and the assessment of genetic radiation hazards in man. Elsevier, Amsterdam, 1982

    Google Scholar 

  34. Schinzel A: Catalogue of unbalanced chromosome aberrations in man. De Gruyter, Berlin, 1984

    Google Scholar 

  35. Schull WJ, JV Neel: Maternal radiation and mongolism. Lancet I, 1962: 537–538

    Article  Google Scholar 

  36. Sigler AT, AM Lilienfeld, BH Cohen, JE Westlake: Radiation exposure in parents of children with mongolism (Down’s Syndrome). Bull John Hopkins Hosp 117, 1965: 374–399

    Google Scholar 

  37. Stevenson AC, V Matousek: Medical X-ray exposure listing of the parents of children with Down’s Syndrome (mongolism). Medical Research Council, Population Cytogenetics Research Unit, Oxford, 1961

    Google Scholar 

  38. Stevenson AC, R Mason, K Edwards: Maternal diagnostic X-irradiation before conception and the frequency of mongolism in children subsequently born. Lancet II, 1970: 1335–1337

    Article  Google Scholar 

  39. Strausmanis R, IB Henrikson, M Holmberg, C Rönnbäck: Lack of effect on the chromosomal nondisjunction in aged mice after low dose X-irradiation. Mutat Res 49, 1981: 269–274

    Google Scholar 

  40. Sundaram K: Down’s Syndrome in Kerala. Nature 267, 1977: 728

    Article  Google Scholar 

  41. Speed IRM, AC Chandley: The response of germ cells of the mouse to the induction of nondisjunction by X-rays. Mutat Res 84, 1981: 409–418

    Article  PubMed  CAS  Google Scholar 

  42. Szemere G, AC Chandley: Trisomy and triploidy induced by X-irradiation of mouse spermatocytes. Mutat Res 33, 1975: 229–238

    Article  PubMed  CAS  Google Scholar 

  43. Tates AD: Microtus oeconomus (Rodentia), a useful mammal for studying the induction of sex-chromosome nondisjunction and diploid gametes in male germ cells. Environ Health Perspect 31, 1979: 151–159

    PubMed  CAS  Google Scholar 

  44. Tates AD, N de Vogel: Further studies on effects of X-irradiation on prespermatid stages of the northern vole Microtus oeconomus. Low induction of sex-chromosomal nondisjunction and very high induction of diploid spermatids. Mutat Res 82, 1981: 323–330

    Article  PubMed  CAS  Google Scholar 

  45. Tease C: Similar dose-related chromosome non-disjunction in young and old female mice after X-irradiation. Mutat Res 95, 1982: 287–296

    Article  PubMed  CAS  Google Scholar 

  46. Uchida IA: Maternal radiation and trisomy 21. In: Hook EB, IH Porter (eds) Population cytogenetics: Studies in humans. Academic Press, New York, 1968: pp 285–299

    Google Scholar 

  47. Uchida IA, EJ Curtis: A possible association between maternal radiation and mongolism. Lancet II, 1961:848–850

    Article  Google Scholar 

  48. Uchida IA, CPV Freemann: Radiation-induced non-disjunction in oocytes of aged mice. Nature 250, 1977:601–602

    Article  Google Scholar 

  49. Uchida IA, CPV Lee: Radiation induced non-disjunction in mouse oocytes. Nature 250, 1974: 601–602

    Article  PubMed  CAS  Google Scholar 

  50. Verma IC, N Kochupillai, MS Grewal, K Ramachandran, V Ramalingaswami: Reply to Sundaram K, JH Edwards, DG Harnden, Nature 267, 1977: 729

    Article  Google Scholar 

  51. Villumsen AL: Environmental factors in congenital malformations. 1970 FADL s Forlag Copenhagen, cited in Sankaranarayanan K, 1982

    Google Scholar 

  52. Yamamoto M, T Shimada, A Endo, G Watanabe: Effects of low-dose X-irradiation on the chromosomal non-disjunction in aged mice. Nature 244, 1973: 206–208

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hansmann, I. (1989). Strahleninduzierte Aneuploidien beim Säuger. In: Köhnlein, W., Traut, H., Fischer, M. (eds) Die Wirkung niedriger Strahlendosen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74676-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74676-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74677-2

  • Online ISBN: 978-3-642-74676-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics