Advertisement

Noninvasive Control of Hyperthermia

  • J. C. Bolomey
  • M. S. Hawley
Chapter
Part of the Clinical Thermology book series (CLIN THERM)

Abstract

It is now well demonstrated that hyperthermia can constitute an efficient adjuvant to radiotherapy and chemotherapy in cancer treatment. The precondition of successful results is that hyperthermia treatments are carefully controlled according to more or less well-defined clinical protocols stipulating the most efficient treatment sequences. These protocols imply some constraints concerning the temperature distribution tolerances to be satisfied in the heated volumes in order simultaneously to obtain therapeutic efficiency inside tumoral tissues and to avoid any undesirable burning effect in surrounding healthy tissues.

Keywords

Nuclear Magnetic Resonance Electrical Impedance Tomography Complex Permittivity Scattered Field Nuclear Magnetic Resonance Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams MF, Anderson AP (1982) Synthetic aperture tomographic imaging for microwave diagnostics. Proc IEE 129 (2):83–88Google Scholar
  2. 2.
    Aida S, Iwama N, Ogura I (1985) Fundamental experiment of temperature dependence of ultrasound parameters. In: Egawa S (ed) Progress in hyperthermic oncology. Proc 2nd Annual Meeting Japan Soc Hyperthermic Onc 7–9 Nov, 1985, Shinshara Publishers Inc, pp 234–235Google Scholar
  3. 3.
    Amasha HM, Anderson AP, Conway J, Barber DC (1988) Quanitative assessment of impedance tomography for temperature measurements in microwave hyperthermia. Clin Phys Physiol Meas 9 [Suppl A]:49–53PubMedCrossRefGoogle Scholar
  4. 4.
    Arcangeli G, Lombardini P, Lovisolo G, Marsiglia G, Piatelli M (1984) Focusing of 915 MHz electromagnetic power on deep human tissues: a mathematical model study. IEE Trans Bio Med Eng 31(l):47–52CrossRefGoogle Scholar
  5. 5.
    Barber DC, Brown BH, Freeston IL (1983) Imaging spatial distributions of resistivity using applied potential tomography. Electronic Lett (19)22:933–934CrossRefGoogle Scholar
  6. 6.
    Barber DC, Seager AD (1987) Fast reconstruction of resistance images. Clin Phys Physiol Meas 8 (Suppl)A: 47–54PubMedCrossRefGoogle Scholar
  7. 7.
    Bardati F, Solimini D (1983) Radiometric sensing of biological layered media. Radio Sci 18 (6):1393–1401CrossRefGoogle Scholar
  8. 8.
    Bardati F, Mongiaro M, Solimini D (1986) Synthetic array for radiometric retrieval of fields in tissues. IEEE Trans Microwave Theory Tech 34 (5)Google Scholar
  9. 9.
    Barret AH, Myers PC (1975) Subcutaneous temperatures: a method of non-invasive sensing. Science 190 (4215):669–671CrossRefGoogle Scholar
  10. 10.
    Benjapolakul W, Shiina T, Kageyama Y, Saito M (1985) Non-invasive temperature measurement by ultrasound in hyperthermia. In: Egawas S (ed) Progress in hyperthermic oncology. Proc 2nd Annual Meeting Japan Soc Hyperthermic Onc, 7–9 Nov, 1985, Shinohara Publishers Inc, pp 232–233Google Scholar
  11. 11.
    Bentzen SM (1983) Quantitative computed tomography. Ph D Thesis, University of AarhusGoogle Scholar
  12. 12.
    Bentzen SM, Overgaard J, Jorgensen J (1984) Isotherm mapping in hyperthermia using subtraction X-ray computed tomography. Radiother Oncol 2:255–260PubMedCrossRefGoogle Scholar
  13. 13.
    Bolomey JC (1982) La méthode diffusion modulée: une aproche au relevé des cartes de champs microondes en temps réel. L’onde Electrique 62(5):73–78Google Scholar
  14. 14.
    Bolomey JC, Peronnet G, Pichot C, Jofre L, Gautherie M, Guerquin-Kern JL (1984) L’imagerie microonde active en génie biomédical. In: Lewiner J (ed) L’imagerie du corps humain. Physique, les Ulis, FranceGoogle Scholar
  15. 15.
    Bordure G, Delauzin JP, Dubois JB, Hay M (1985) Application et contrôle atraumatique de 1’hyperthermic par microondes pour le traitement de tumeurs superficielles. J Biophys Biomech 9:37–39Google Scholar
  16. 16.
    Bowen T (1982) Radiation induced thermoacoustic imaging. US Patent, PCT, US 82/00495Google Scholar
  17. 17.
    Brooks LA, Mitchell LG, O’Connor CM, DiChiro G (1981) On the relationship between computed tomography numbers and specific gravity. Phys Med Biol 26 (1):141–147PubMedCrossRefGoogle Scholar
  18. 18.
    Brown BH, Barber DC, Seager AD (1985) Applied potential tomography: possible clinical applications. Clin Phys Physiol Meas 6:109–121PubMedCrossRefGoogle Scholar
  19. 19.
    Bruggmoser G, Hinkelbein W (1986) The applicability of microwave thermography for deep-seated volumes. In: Brugmoser G et al. (eds) Recent results in cancer research, vol 101. Springer Berlin Heidelberg New York, pp 88–98Google Scholar
  20. 20.
    Burdette EC, Cain FL, Seals J (1980) In-vivo probe measurement technique for determining dielectric properties at VHF through microwave frequencies. IEEE Trans Microwave Theory Tech 28(4):14–427CrossRefGoogle Scholar
  21. 21.
    Burdette EC (1983) Influence of blood flow on tissue electrical properties: examination of regional blood flow in the dog kidney by a new probe method. Ph D Thesis, Emory University School of Medicine, GeorgiaGoogle Scholar
  22. 22.
    Bydder GM, Kreel L (1979) The temperature dependence of computed tomography attenuation values. J Comput Assist Tomogr 4:506–510CrossRefGoogle Scholar
  23. 23.
    Caspers F, Conway J (1982) Measurement of power density in a lossy material by means of electromagnetically induced acoustic signals for non-invasive determination of spatial thermal absorption in connection with pulsed hyperthermia. In: 12th-European Microwave Conference Helsinki, 13–17 Sept, 1982, Microwave Exhibitions and Publishers Ltd, pp 565–568CrossRefGoogle Scholar
  24. 24.
    Cetas C (1984) Will thermometric tomography become practical for hyperthermia treatment monitoring? Cancer Res (Suppl)44:4805s–4808sPubMedGoogle Scholar
  25. 25.
    Cheung AY, Golding WM, Samaras GM (1981) Direct contact applicator for microwave hyperthermia. J Microwave Power 16(2):151–159Google Scholar
  26. 26.
    Chivé M, Plancot M, Leroy Y, Giaux G, Prévost B (1982) Microwave and radiofrequency hyperthermia monitored by microwave thermography. In: 12th European Microwave Conference Helsinki, 13–17 Sept, 1982, Microwave Exhibitions and Publishers Ltd, pp 547–552CrossRefGoogle Scholar
  27. 27.
    Chivé M (1985) Technical aspects of microwave hyperthermia controlled by microwave radiometry. Odam-Brücker Medical Report 85(1):30–34Google Scholar
  28. 28.
    Christensen DA (1982) Current techniques in non-invasive thermometry. In: Nussbaum GH (ed) Physical aspects of hyperthermia, médical physics monograph no 8. Amercian Institute of Physics, New York, pp 266–279Google Scholar
  29. 29.
    Coldefy H (1986) Contrôle non-invasif de l’hyperthermie par imagerie microonde active. Etude préliminaire sur fantôme homogène. Ph D Thesis Université de Paris-SudGoogle Scholar
  30. 30.
    Conway J, Hawley MS, Seagar AD, Brown BH, Barber DC (1985) Applied potential tomography (APT) for non-invasive thermal imaging during hyperthermia treatment. Electronic Lett 21:836–838CrossRefGoogle Scholar
  31. 31.
    Conway J (1987) Electrical impedance tomography for thermal monitoring of hyperthermia treatment: an assessment using in vitro and in vivo measurements. Clin Phys Physiol Meas 8, [Suppl A]:141–146PubMedCrossRefGoogle Scholar
  32. 32.
    David BJ, Lele PP (1985) An acoustic phase shift technique for the non-invasive measurement of temperature changes in tissues. Proc. IEEE 1985, Ultrasonics Symp San Francisco, CAGoogle Scholar
  33. 33.
    de Lateur BJ, Lehman JF, Stronebridge JB, Warren CG, Guy AW (1970) Muscle heating in human subjects with 915 MHz microwave contact applicator. Arch Phys Med 51:147Google Scholar
  34. 34.
    de Talhouët H (1986) Contribution à l’amélioration de la résolution en imagerie microonde monochromatique. Ph D Thesis, Université de Paris-SudGoogle Scholar
  35. 35.
    Devaney AJ (1982) A filtered back-propagation algorithm for diffraction tomography. Ultrasonic Imaging 4:336–350PubMedCrossRefGoogle Scholar
  36. 36.
    Dickinson RJ, Hall AS, Hind AJ, Young IR (1986) Measurement of changes in tissue temperature using MR images. J Comput Assist Tomogr 10(3):468–472PubMedGoogle Scholar
  37. 37.
    Do-Huu JP, Mayeux C, Micheron F (1985) In-vivo effect of human tissue heating on NMR images. VIIth Meeting of ESHO, ParisGoogle Scholar
  38. 38.
    Duchêne B, Tabbara W (1985) Tomographie ultrasonore par diffraction. Rev Phys Appl 20:299–304Google Scholar
  39. 39.
    Edrich J, Jobe WE (1982) Imaging microwave thermography. Temperature (Am Inst Phys) 5:1379–1380Google Scholar
  40. 40.
    Edrich J, Hardee PC (1974) Thermography at millimetre wavelengths. Proc IEEE 62 (10):1391CrossRefGoogle Scholar
  41. 41.
    Enel L, Leroy Y, Van de Velde JC, Mamouni A (1984) Improved recognition of thermal structures by microwave radiometry. Electronic Lett 20(7):293–294CrossRefGoogle Scholar
  42. 42.
    Ermert H, Dohlus M (1986) Microwave-diffraction-tomography of cylindrical objects using 3-dimensional wave-fields. NTZ Archiv 8(5):111–117Google Scholar
  43. 43.
    Eyüboglu BM, Brown BH, Barber DC, Seager AD (1987) Localisation of cardiac related impedance changes in the thorax. Clin Phys Physiol Meas 8 [Suppl A]: 167–173PubMedCrossRefGoogle Scholar
  44. 44.
    Fallone BG, Moran PR, Podgorsak EB (1982) Non-invasive thermometry with a clinical X-ray CT scanner. Med Phys 9(5):715–721PubMedCrossRefGoogle Scholar
  45. 45.
    Gernero LH (1987) Reconstruction d’images tomographi-ques à partir d’un ensemble limité de projections. Ph D Thesis, University of Paris, ParisGoogle Scholar
  46. 46.
    Godgaonkar DK, Ghandi OP, Hagmann MJ (1983) Estimation of complex permittivities of three-dimensional biological bodies. IEEE Trans Microwave Theory Tech 31 (6):442–446CrossRefGoogle Scholar
  47. 47.
    Grant EH (1984) Dielectric properties of normal and malignant tissues. In: Colloquium on Electromagnetic techniques for the detection and treatment of malignant disease. IEE Digest (36): 1Google Scholar
  48. 48.
    Griffiths H, Ahmed A (1987) Applied potential tomography for non-invasive temperature mapping in hyperthermia. Clin Phys Physiol 8 [Suppl A]:147–153CrossRefGoogle Scholar
  49. 49.
    Guerquin-Kern JL (1980) Hyperthermie locale par microondes en thérapeutique cancérologique. Thèse 3ème Cycle, University of Strasbourg, StrasbourgGoogle Scholar
  50. 50.
    Guerquin-Kern JL, Gautherie M, Peronnet G, Jofre L, Bolomey JC (1985) Active microwave tomographic imaging of isolated perfused animal organs. Bioelectromagnetics 6:145–146PubMedCrossRefGoogle Scholar
  51. 51.
    Guo TC, Guo WW, Larsen LE (1984) A local field study of a water-immersed microwave antenna array for medical imagery and therapy. IEEE Trans Microwave Theory Tech 32(8):844–860CrossRefGoogle Scholar
  52. 52.
    Guo TC, Guo WW, Larsen LE (1986) Recent developments in microwave medical imagery. Phase and amplitude conjugations and the inverse scattering theorem. In: Larsen LE, Jacobi J (eds) Medical applications of microwave imaging. IEEE P, New York, pp 167–183Google Scholar
  53. 53.
    Guo TC, Guo WW (1987) Physics of image formation by microwave scattering. Medical Imaging, SPIE Proc 767, (2):816–819Google Scholar
  54. 54.
    Guy AW (1971) Analyses of electromagnetic fields induced in biological tissues by thermographic studies on equivalent phantom models. IEEE Trans Microwave Theory Tech 19(2):205–213CrossRefGoogle Scholar
  55. 55.
    Hagmann M (1981) Application of moment methods to electromagnetic biological imaging. Proc IEEE MTT-S Symposium, Los Angeles, 15–19 June 1981, p 482Google Scholar
  56. 56.
    Hand JW (1984) Thermometry in hyperthermia. In: Overgaard J (ed) Hyperthermia oncology, vol 2. Taylor and Francis, London, pp 299–308Google Scholar
  57. 57.
    Haney MJ, O’Brien WD (1982) Ultrasonic tomography for differential thermography. In: Ash EA, Hills CR (eds) Acoustic imaging. Plenum, New York, pp 589–597Google Scholar
  58. 58.
    Harrington RF (1961) Time harmonic electromagnetic fields. McGraw-Hill, New YorkGoogle Scholar
  59. 59.
    Harris ND, Suggett AJ, Barber DC, Brown BH (1987) Application of applied potential tomography (APT) in respiratory medicine. Clin Phys Physiol Meas 8 [Suppl A]:155–165PubMedCrossRefGoogle Scholar
  60. 60.
    Haslam NC, Gillespie AR, Haslam CGT (1984) Aperture synthesis thermography: a new approach to passive microwave temperature measurement in the body. IEEE Trans Microwave Theory Tech 32(8):829–835CrossRefGoogle Scholar
  61. 61.
    Hawley MS (1986) Microwave radiometric thermometry in layered tissue structures. PhD Thesis, University of Sheffield, SheffieldGoogle Scholar
  62. 62.
    Hawley MS, Conway J, Anderson AP, Cudd PA (1988) The influence of tissue layering on microwave thermographic measurements. Int J Hyperthermia 4(4):427–435PubMedCrossRefGoogle Scholar
  63. 63.
    Hay M, Dubois JB, Bordure G (1987) Applicateurs à géométrie variable et contrôle atraumatique de l’hyperthermie par microondes de 2450 MHz dans le traitement des tumeurs superficielles. Innov Tech Biol Med 8 (3): 294–305Google Scholar
  64. 64.
    Hessary MK, Chen KM (1984) EM local heating with HF electric fields. IEEE Trans Microwave Theory Tech 32 (6):569–576CrossRefGoogle Scholar
  65. 65.
    Hirai S, Nikawa Y, Okada F, Kikuchi M, Mori S (1987) Dual waveguide applicator with temperature measurement in EM hyperthermia. IEEE 9th Annual Conf IEEE-EMB Soc, pp 1308–1309Google Scholar
  66. 66.
    Jacobi JH, Larsen LE, Hast CT (1979) Water-immersed microwave antennas and their application to microwave interrogation of biological targets. IEEE Trans Microwave Theory Tech 27(1):70–78CrossRefGoogle Scholar
  67. 67.
    Jacobi JH, Larsen LE (1980) Microwave time-delay spectroscopic imagery of isolated canine kidney. Med Phys 7 (1):1–7PubMedCrossRefGoogle Scholar
  68. 68.
    Jofre L, Reyes E, Ferrando M, Elias A, Romeu J, Baquero M (1986) A cylindrical system for quasi-real time microwave tomography. 16th European Microwave Conference, Dublin, pp 599–604Google Scholar
  69. 69.
    Kaveh M, Soumekh M, Greenleaf JF (1984) Signal processing for diffraction tomography. IEEE Trans SUU-31 (4):230–239Google Scholar
  70. 70.
    Knüttel B, Juretschke HP (1986) Temperature measurement by nuclear magnetic resonance and its possible use as a means of in-vivo non-invasive temperature measurement and for hyperthermia treatment assessment. Recent Results Cancer Res 101:109–118PubMedGoogle Scholar
  71. 71.
    Krug J, Edenhofer P (1985) Microwave acoustic imaging for medical applications. 17th European Microwave Conference, Paris, 9–13 Sept 1985, pp 655–660Google Scholar
  72. 72.
    Krug J (1987) Private communicationGoogle Scholar
  73. 73.
    Landau LD, Lifshitz EM (1960) Electrodynamics of continuous media. Pergamon, New YorkGoogle Scholar
  74. 74.
    Larsen LE, Jacobi JH (1979) Microwave scattering parameter imagery of an isolated canine kidney. Med Phys 6 (5):394–403PubMedCrossRefGoogle Scholar
  75. 75.
    Larsen LE, Jacobi JH (1982) Microwaves offer promise as imaging modality. Diagn Imag Clin Med 11:44–47Google Scholar
  76. 76.
    Lewa J, Majewska Z (1980) Temperature relationship of proton spin-lattice relaxation time T1 in biological tissues. Bull Cancer 67(5):525–530PubMedGoogle Scholar
  77. 77.
    Ludeke KM, Koehler J, Kanzenbach J (1979) A radiation balanced microwave thermograph for medical applications. Acta Electronica 22(1):65–69Google Scholar
  78. 78.
    Mamouni A, Leroy Y, Van de Velde JC, Bellardi L (1983) Introduction to correlation microwave thermography. J Microwave Power 18(3):285–293Google Scholar
  79. 79.
    Man (1974) ICRP 23, Pergamon Press, OxfordGoogle Scholar
  80. 80.
    Milligan AJ, Couran PB, Ropar MA, McCulloch HA, Ahuja RK, Dobelbower RR (1983) Predictions of blood flow from thermal clearance during regional hyperthermia. Int J Radiat Oncol Biol Phys 9:1335–1343PubMedCrossRefGoogle Scholar
  81. 81.
    Mizushina S (1987) Automedica 8 (4) (special issue on noninvasive temperature measurement)Google Scholar
  82. 82.
    Mueller RK, Kaveh M, Wade G (1979) Reconstruction tomography and application to ultrasonics. Proc IEEE, 67 (4):567–587CrossRefGoogle Scholar
  83. 83.
    Nasoni RL, Bowen T, Conner WG, Sholes RR (1979) In-vivo temperature dependence of ultrasound speed in tissue and its applications to non-invasive temperature monitoring. Ultrason Imaging 1(1):34–414PubMedCrossRefGoogle Scholar
  84. 84.
    Newman WH, Dittwar A, Delhomme G, Delannoy J (1986) Tumor perfusion during microwave hyperthermia: preliminary measurements. Proc IEEE 8th Ann Conf EMB Soc pp 1503–1506Google Scholar
  85. 85.
    Olsen RG, Lin JC (1981) Microwave pulse induced resonances in spherical head models. IEEE Trans Microwave Theory Tech 29(10):1114–1117CrossRefGoogle Scholar
  86. 86.
    Olsen RG, Lin JC (1983) Acoustical imaging of a model of human hand using pulsed microwave irradiation. Bioelec-tromagnetics 4:397–400CrossRefGoogle Scholar
  87. 87.
    Pichot C, Jofre L, Peronnet G, Bolomey JC (1985) Active microwave imaging of inhomogeneous bodies. IEEE Trans AP 33(4):416–425Google Scholar
  88. 88.
    Plancot M, Prévost B, Chivé M, Fabre JJ, Ledel I, Giaux G (1987) A new method for thermal dosimetry in microwave hyperthermia using microwave radiometry for temperature control. Int J Hyperthermia 3(1):9–19PubMedCrossRefGoogle Scholar
  89. 89.
    Rajagopalan B, Greenleaf JF, Thomas PJ, Johnson JA, Bahn RC (1979) Variation of acoustic speed with temperature in various excised human tissues studied by ultrasound computerized tomography. In: Linzer M (ed) Ultrasound tissue characterization. US Gov Printing Office, NBS Special Publication, Washington DC, 525, pp 227–233Google Scholar
  90. 90.
    Rangayyan RM (1986) Computed tomography techniques and algorithms: a tutorial. Innov Tech Biol Med 7(6): 746–762Google Scholar
  91. 91.
    Robert J, Marchai C, Escanye JM, Thouvenot P, Gaulard ML, Tosser A (1981) Ultrasound velocimetry for hyperthermia control. Prog Clin Biol Res 107:555Google Scholar
  92. 92.
    Robillard M (1981) Contribution à l’étude des sondes et à la reconnaissance d’objet thermique par la thermographie microonde. Thèse 3ème Cycle, Université de Lille, LilleGoogle Scholar
  93. 93.
    Roubine E, Bolomey JC (1977) Antennes. Masson, ParisGoogle Scholar
  94. 94.
    Seagar AD, Brown BH (1987) Limitation in hardware design in impedance imaging. Clin Phys Physiol Meas 8 [Suppl A]:85–90PubMedCrossRefGoogle Scholar
  95. 95.
    Seagar AD, Barber DC, Brown BH (1987) Theoretical limits to sensitivity and resolution in impedance imaging. Clin Phys Physiol Meas 8 [Suppl A]:13–31PubMedCrossRefGoogle Scholar
  96. 96.
    Slaney M, Kak AC, Larsen LE (1984) Limitations of imaging with first-order diffraction tomography. IEEE Trans Microwave Theory Tech 32(8):860–874CrossRefGoogle Scholar
  97. 97.
    Tarassenko L, Rolfe P (1984) Imaging spatial distributions of resistivity — an alternative approach. Electronic Lett 20 (14):574–575CrossRefGoogle Scholar
  98. 98.
    Van Hippel (1955) Dielectric materials and applications. Wiley, New YorkGoogle Scholar
  99. 99.
    Yorkey TJ, Webster JG (1987) A comparison of impedance tomographic reconstruction algorithms. Clin Phys Physiol Meas 8 [Suppl A]:55–62PubMedCrossRefGoogle Scholar
  100. 100.
    Zamenhof RG, Sternick ES, Curran B (1983) Comments on “non-invasive thermometry with a clinical X-ray CT scanner”. Med Phys 10(3):374PubMedCrossRefGoogle Scholar
  101. 101.
    Zamenhoff RG, Sternick ES, Curran BM (1981) Non-invasive temperature mapping by computerized tomography. Int J Radiat Oncol Biol Phys 7:1235Google Scholar
  102. 102.
    Zheng E, Shao S, Webster JG (1984) Impedance of skeletal muscle from 1 Hz to 1 MHz. IEEE Trans Biomed Eng 31 (6):477–481PubMedCrossRefGoogle Scholar
  103. 103.
    Parker DL, Smith V, Sheldon P, Crooks LE, Fussell L (1983) Temperature distribution measurements in two-dimensional NMR imaging. Med Phys 10 (3):321–325PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • J. C. Bolomey
  • M. S. Hawley

There are no affiliations available

Personalised recommendations