Skip to main content

Modulation of the Edge Tension of Lipid Membranes by Cholate and Cholesterol and the Micelle-Vesicle Transition in Model Bile Systems

  • Conference paper
  • 124 Accesses

Abstract

Let us consider a cut across a lipid membrane (Fig. 1). Hydrocarbon is exposed to water. The work per unit length required to create an open edge is denoted as edge tension. We attribute the existence and stability of closed — edge-free — membranes to a high level of edge tension, which prevents spontaneous fragmentation: “Membranes hate edges” [1]. Fragmentation of a membrane, for example, in digestion, requires the reduction of edge tension to a very low level. We can suppose that chemicals such as bile salts bind to the open edge and shield the hydrocarbon from water due to their amphiphilic character [2, 3].

This research was supported by the Deutsche Forschungsgemeinschaft (Schwerpunkt „Biophysik der Zelle,“ Fr349/4 and Sonderforschungsbereich 239, D7)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gingell D, Ginsberg L (1978) Problems in the physical interpretation of membrane interaction and fusion. In: Poste G, Nicolson GL (eds) Membrane fusion. Elsevier/North Holland, Amsterdam, pp 791–833

    Google Scholar 

  2. Small DM (1967) Physicochemical studies of cholesterol gallstone formation. Gastroenterology 52: 607–610

    CAS  Google Scholar 

  3. Small DM, Penkett SA, Chapman D (1969) Studies on simple and mixed bile salt micelles by nuclear magnetic resonance spectrosopy. Biochim Biophys Acta 176: 178–189

    PubMed  CAS  Google Scholar 

  4. Fromherz P (1983) Lipid vesicle structure: size control by edge-active agents. Chem Phys Lett 94: 259–266

    Article  CAS  Google Scholar 

  5. Fromherz P, Rüppel D (1985) Lipid vesicle formation: the transition from open disks to closed shells. FEBS Lett 179: 155–159

    Article  CAS  Google Scholar 

  6. Fromherz P, Röcker C, Rüppel D (1986) From disocoid micelles to spherical vesicles. The concept of edge activity. Faraday Discuss Chem Soc 81: 39–48

    Article  CAS  Google Scholar 

  7. Fromherz P, Wiedenmann E (1990) The formation of lipid vesicles in lecithin/cholate disper-sions and the concept of edge-activity. Biophys J (submitted)

    Google Scholar 

  8. Fergason JL, Brown GH (1968) Liquid crystals and living systems. J Am Oil Chem Soc 45: 120–127

    Article  PubMed  CAS  Google Scholar 

  9. Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch [C] 28: 693–703

    CAS  Google Scholar 

  10. Helfrich W (1974) The size of bilayer vesicles generated by sonication. Phys Lett A 50: 115–116

    Article  Google Scholar 

  11. Bivas I, Hanusse P, Bothorel P, Laianne J, Aguerre-Chariol O (1987) An application of the optical spectroscopy to the determination of the curvature elastic modulus of biological and model membranes. J Phys 48: 855–867

    Article  Google Scholar 

  12. Mazer NA, Benedek GB, Carey MC (1980) Quasielastic light-scattering of aqueous biliary lipid systems. Mixed micelle formation in bile-lecithin solutions. Biochemistry 19: 601–615

    Article  PubMed  CAS  Google Scholar 

  13. Schurtenberger P, Mazer NA, Känzig W (1985) Micelle to vesicle transition in aqueous solutions of bile salt and lecithin. J Phys Chem 89: 1042–1049

    Article  CAS  Google Scholar 

  14. Wiedenmann E (1987) Untersuchung der Mizell-Vesikel Umwandlung mit quasielastischer Lichtstreuung. Diplomarbeit, University of Ulm

    Google Scholar 

  15. Fredericq E, Houssier C (1960) Electric dichroism and electric birefringence. Clarendon, Oxford

    Google Scholar 

  16. Hoffmann H, Schorr W (1985) Electro-optical properties of rodlike micelles. Ber Bunsenges Phys Chem 89: 538–545

    CAS  Google Scholar 

  17. Lappöhn A (1988) Untersuchung der Mizell-Vesikel-Umwandlung mit elektrischer Doppelbrechung. Diplomarbeit, University of Ulm

    Google Scholar 

  18. Fromherz P (1984) The assembly of amphiphiles: molecular and phenomenological models. In: Luisi PL, Straub BE (eds) Reverse micelles. Plenum, New York

    Google Scholar 

  19. Haydon DA, Taylor J (1963) The stability and properties of bimolecular lipid leaflets in aqueous solution. J. Theor Biol. 4: 281–296

    Article  PubMed  CAS  Google Scholar 

  20. Israelachvili JN, Marcelja S, Horn RG (1980) Physical principles of membrane organization. Q Rev. Biophys. 13: 121–200

    Article  PubMed  CAS  Google Scholar 

  21. Carey MC, Small DM (1978) The physical chemistry of cholesterol solubility in bile. J. Clin. Invest. 61: 988–1026

    Google Scholar 

  22. Fromherz P (1990) Does cholesterol stabilize lipid membranes by an enhancement of the edge-tension? (in preparation)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag, Berlin Heidelberg

About this paper

Cite this paper

Fromherz, P. (1990). Modulation of the Edge Tension of Lipid Membranes by Cholate and Cholesterol and the Micelle-Vesicle Transition in Model Bile Systems. In: Swobodnik, W., Soloway, R.D., Ditschuneit, H. (eds) Gallstone Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74619-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74619-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50965-3

  • Online ISBN: 978-3-642-74619-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics