Skip to main content

Non-human Hair

  • Chapter
Hair and Hair Diseases

Abstract

In the literature the term “hair” is applied not only to the pelage of mammals, but also to other structures such as bristles on insects, sensory organs in crustaceans and small structures on plants. The present discussion will be con-fined to the pelage of mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander P, Hudson RF (1954) Wool. Its chemistry and physics. Chapman and Hall, London

    Google Scholar 

  • Allden WG (1979) Feed intake, diet composition and wool growth. In: Black JL, Reis PJ (eds) Physiological and environmental limitations to wool growth. University of New England Publishing Unit, Armidale, pp 61–78

    Google Scholar 

  • Appleyard HM (1960) Guide to the identification of animal fibres. Wool Industries Research Association, Leeds

    Google Scholar 

  • Argyris TS (1969) Hair growth induced by damage. In: Montagna W, Dobson RL (eds) Hair growth. Pergamon, Oxford, pp 339–356 (Advances in biology of skin, vol IX)

    Google Scholar 

  • Auber L (1950) The anatomy of follicles producing wool-fibres, with special reference to keratinization. Trans R Soc Edinburgh 62:191–254

    Google Scholar 

  • Bell M (1969) The ultrastructure of differentiating hair follicles in fetal rhesus monkeys (Macaca mulatto). In: Montagna W, Dobson RL (eds) Hair growth. Pergamon, Oxford, pp 61–81 (Advances in biology of skin, vol IX)

    Google Scholar 

  • Benedict FA (1957) Hair structure as a generic character in bats. Univ Calif Publ Zool 59:285–548

    Google Scholar 

  • Birbeck MSC, Mercer EH (1957 a) The electron microscopy of the human hair follicle. Part 1. Introduction and the hair cortex. J Biophys Biochem Cytol 3:203–214

    PubMed  CAS  Google Scholar 

  • Birbeck MSC, Mercer EH (1957b) The electron microscopy of the human hair follicle. Part 2. The hair cuticle. J Biophys Biochem Cytol 3:215–222

    PubMed  CAS  Google Scholar 

  • Bones RM, Sikorski J (1967) The histological structure of wool fibres and their plasticity. J Text Inst 58:521–532

    Google Scholar 

  • Bosse K (1965) Growth and replacement of hair in the guinea-pig. In: Rook AJ, Walton GS (eds) Comparative physiology and pathology of the skin. Blackwell Scientific, Oxford, pp 151–159

    Google Scholar 

  • Bottomley GA (1979) Weather conditions and wool growth. In: Black JL, Reis PJ (eds) Physiological and environmental limitations to wool growth. University of New England Publishing Unit, Armidale, pp 115–125

    Google Scholar 

  • Bradbury JH (1973) The structure and chemistry of keratin fibers. Adv Protein Chem 27:111–211

    PubMed  CAS  Google Scholar 

  • Bradbury JH, Kulkarni VG (1975) The chemical composition of wool. Part XIII. Separation and analysis of microfibrils. Text Res J 45:79–83

    CAS  Google Scholar 

  • Bradbury JH, Leeder JD (1970) Keratin fibres. IV. Structure of cuticle. Aust J Biol Sci 23:843–854

    PubMed  CAS  Google Scholar 

  • Bradbury JH, Chapman GV, King NLR (1965) The chemical composition of wool. III. Analysis of cuticle, skin flakes and cell membrane material. In: Anon (ed) Cirtel. IIIe Congrès International de la Recherche Textile Lainière Paris 1965. Institut Textile de France, Boulognes-Seine, section 1, pp 359–364

    Google Scholar 

  • Braun-Falco O (1958) The histochemistry of the hair follicle. In: Montagna W, Ellis RA (eds) The biology of hair growth. Academic, London, pp 65–90

    Google Scholar 

  • Brown GH, Turner HN, Young SSY, Dolling CHS (1966) Vital statistics for an experimental flock of Merino sheep. III. Factors affecting wool and body characteristics, including the effect of age of ewe and its possible interaction with method of selection. Aust J Agric Res 17:557–581

    Google Scholar 

  • Brown GH, Turner HN, Dolling CHS (1968) Vital statistics for an experimental flock of Merino sheep. V. The effects of age of ram, maternal handicap, and year of measurement on 10 wool and body characteristics for unselected rams. Aust J Agric Res 19:825–835

    Google Scholar 

  • Brown TD, Onions WJ (1960) Anomalies in the microscopic structure of some wools. Nature 186:93–94

    PubMed  CAS  Google Scholar 

  • Brunner H, Coman BJ (1974) The identification of mammalian hair. Inkata, Melbourne

    Google Scholar 

  • Brunner H, Brunner A, Gerendâs J (1971) A fraction from oxidized wool with a high tyrosine content. Appl Polym Symp 18:55–64

    Google Scholar 

  • Bullough WS, Laurence EB (1958) The mitotic activity of the follicle. In: Montagna W, Ellis RA (eds) The biology of hair growth. Academic, London, pp 171–187

    Google Scholar 

  • Butcher EO (1951) Development of the pilary system and the replacement of hair in mammals. Ann NY Acad Sci 53:508–516

    PubMed  CAS  Google Scholar 

  • Carter HB (1943) Studies in the biology of the skin and fleece of sheep. Aust Commonw Counc Sci Ind Res Bull 164

    Google Scholar 

  • Carter HB (1955) The hair follicle group in sheep. Anim Breed Abstr 23:101–116

    Google Scholar 

  • Carter HB (1965) Variation in the hair follicle population of the mammalian skin. In: Lyne AG, Short BF (eds) Biology of the skin and hair growth. Angus and Robertson, Sydney, pp 25–33

    Google Scholar 

  • Carter HB, Dowling DF (1954) The hair follicle and apocrine gland population of cattle skin. Aust J Agric Res 5:745–754

    Google Scholar 

  • Cattaneo SM, Quastler H, Sherman FG (1961) Proliferative cycle in the growing hair follicle of the mouse. Nature 190:923–924

    PubMed  CAS  Google Scholar 

  • Chapman RE (1965) The ovine arrector pili musculature and crimp formation in wool. In: Lyne AG, Short BF (eds) Biology of the skin and hair growth. Angus and Robertson, Sydney, pp 201–232

    Google Scholar 

  • Chapman RE (1971) Cell migration in wool follicles of sheep. J Cell Sci 9:791–803

    PubMed  CAS  Google Scholar 

  • Chapman RE (1976) Electron microscopic and histochemical features of the formation of the orthocortex and paracortex in wool. In: Ziegler K (ed) Proceedings, 5. Internationale Wolltextil-Forschungskonferenz Aachen 1975, Deutsches Wollforschungsinstitut an der Technischen Hochschule, Aachen, vol 2, pp 152–161

    Google Scholar 

  • Chapman RE (1980) A comparison of the effects of some defleecing compounds on wool follicles, fibres and skin of sheep. In: Hudson PRW (ed) Wool harvesting research and development. Australian Wool Corporation, Melbourne, pp 271–286

    Google Scholar 

  • Chapman RE, Bassett JM (1970) The effects of prolonged administration of Cortisol on the skin of sheep on different planes of nutrition. J Endocrinol 48:649–663

    PubMed  CAS  Google Scholar 

  • Chapman RE, Gemmell RT (1971a) The origin of cortical segmentation in wool follicles. J Invest Dermatol 57:377–381

    PubMed  CAS  Google Scholar 

  • Chapman RE, Gemmell RT (1971b) Stages in the formation and keratinization of the cortex of the wool fiber. J Ultrastruct Res 36:342–354

    PubMed  CAS  Google Scholar 

  • Chapman RE, Gemmell RT (1973) An ultrastructural autoradiographic study of the incorporation of [35S]cystine in the wool fibre cortex. J Cell Sci 13:811–819

    PubMed  CAS  Google Scholar 

  • Chapman RE, Rigby RDG (1980) Effects of internally administered N-[5-(4-aminophenoxy) pentyl]phthalimide on wool follicles and skin of sheep. Aust J Biol Sci 33:183–195

    PubMed  CAS  Google Scholar 

  • Chapman RE, Short BF (1964) Crimp in wool: the incidence of abnormal staple crimp within individual flocks. Aust J Exp Agric Anim Husb 4:265–273

    Google Scholar 

  • Chapman RE, Short BF, Hyland PG (1960) Abnormal crimping in Merino and Polwarth wools. Nature 187:960–961

    Google Scholar 

  • Chapman RE, Williams OB, Moule GR (1973) The wool industry. In: Alexander G, Williams OB (eds) The pastoral industries of Australia. Sydney University Press, Sydney, pp 79–116

    Google Scholar 

  • Chapman RE, Downes AM, Wilson PA (1980) Migration and keratinization of cells in wool follicles. Aust J Biol Sci 33:587–603

    PubMed  CAS  Google Scholar 

  • Chapman RE, Panaretto BA, Frith PA (1982) Changes in wool follicles of sheep following ad-ministration of dexamethasone trimethylacetate. J Cell Sci 53:323–335

    CAS  Google Scholar 

  • Chapman RE, Colebrook WF, Black JL (1983) Influence of dietary lysine content on wool follicle function in pre-ruminant lambs. J Agric Sci 101:139–145

    CAS  Google Scholar 

  • Chase HB (1954) Growth of the hair. Physiol Rev 34:113–126

    PubMed  CAS  Google Scholar 

  • Chase HB, Eaton GJ (1959) The growth of hair follicles in waves. Ann NY Acad Sci 83:365–368

    PubMed  CAS  Google Scholar 

  • Chase HB, Silver AF (1969) The biology of hair growth. In: Bittar EE, Bittar N (eds) The biological basis of medicine, vol 6. Academic, London, pp 3–19

    Google Scholar 

  • Chase HB, Rauch H, Smith VW (1951) Critical stages of hair development and pigmentation in the mouse. Physiol Zool 24:1–8

    PubMed  CAS  Google Scholar 

  • Clarke RM, Rogers GE (1970) Protein synthesis in the hair follicle. II. Polysomes and amino acid incorporation. J Invest Dermatol 55:425–432

    PubMed  CAS  Google Scholar 

  • Cockrem F (1959) Studies of the effects of the gene N on body growth and fleece development of the New Zealand Romney. IV. Fleece weight differences and general discussion. Aust J Agric Res 10:424–432

    Google Scholar 

  • Crewther WG (1976) Primary structure and chemical properties of wool. In: Ziegler K (ed) Proceedings, 5. Internationale Wolltextil-Forschungskonferenz Aachen 1975. Deutsches Wollforschungsinstitut an der Technischen Hochschule, Aachen, vol 1, pp 1–101

    Google Scholar 

  • Crewther WG, Fraser RDB, Lennox FG, Lindley H (1965) The chemistry of keratins. Adv Protein Chem 20:191–346

    PubMed  CAS  Google Scholar 

  • Crewther WG, Gillespie JM, Harrap BS, Inglis AS (1966) Low-sulphur proteins from a-keratins. Interrelationships between their amino acid compositions, a-helix contents, and the supercontraction of the parent keratin. Biopolymers 4:905–916

    CAS  Google Scholar 

  • Crewther WG, Dowling LM, Gough KH, Inglis AS, McKern NM, Sparrow LG, Wood EF (1976) The low-sulphur proteins of wool: studies on their classification, characterization, primary and secondary structure. In: Ziegler K (ed) Proceedings, 5. Internationale Wolltextil- Forschungskonferenz Aachen 1975. Deutsches Wollforschungsinstitut an der Technischen Hochschule, Aachen, vol 2, pp 233–242

    Google Scholar 

  • Crewther WG, Dowling LM, Gough KH, Marshall RC, Sparrow LG (1980) The microfibrillar proteins of a-keratin. In: Parry DAD, Creamer LK (eds) Fibrous proteins: scientific, industrial and medical aspects, vol 2. Academic, London, pp 151–159

    Google Scholar 

  • Crick FHC (1952) Is a-keratin a coiled coil? Nature 170:882–883

    PubMed  CAS  Google Scholar 

  • Crick FHC (1953) The packing of a-helices. Simple coiled-coils. Acta Crystallogr 6:689–697

    CAS  Google Scholar 

  • Danforth C (1925) Hair, with special reference to hypertrichosis. Arch Dermatol Syphilol 11:494–508, 637–653, 804–821

    Google Scholar 

  • Danforth C (1939) Physiology of human hair. Physiol Rev 19:94–111

    Google Scholar 

  • Darskus RL, Gillespie JM (1971) Breed and species differences in the hair proteins of four genera of Caprini. Aust J Biol Sci 24:515–524

    PubMed  CAS  Google Scholar 

  • Darskus RL, Gillespie JM, Lindley H (1969) The possibility of common amino acid sequences in high-sulphur protein fractions from wool. Aust J Biol Sci 22:1197–1204

    CAS  Google Scholar 

  • David LT (1934) Expression of genetic hairlessness in the house mouse (Mus musculus). I, II, III, IV. J Exp Zool 68:501–518

    Google Scholar 

  • Davidson P, Hardy MH (1952) The development of mouse vibrissae in vivo and in vitro. J Anat 86:342–356

    PubMed  CAS  Google Scholar 

  • Day MG (1966) Identification of hair and feather remains in the gut and faeces of stoats and weasels. J Zool 148:201–217

    Google Scholar 

  • De Bersaques J (1965) Over de synthese van keratine. Arscia, Brussels De Bersaques J (1966) A propos de la synthèse de la kératine. Arch Belg Dermatol 22:105–108

    Google Scholar 

  • De Bersaques J (1976) Keratin and its formation. Curr Probl Dermatol 6:34–86

    PubMed  Google Scholar 

  • De Bersaques J, Rothman S (1962) Mechanism of keratin formation. Nature 193:147–148

    CAS  Google Scholar 

  • DeDeurwaerder RA, Dobb MG, Sweetman BJ (1964) Selective extraction of a protein fraction from wool keratin. Nature 203:48–49

    Google Scholar 

  • De Meijere JCH (1894) Über die Haare der Säugetiere, besonders über ihre Anordnung. Morphol Jahrb 21:312–424

    Google Scholar 

  • De Weert J, Kint A, Geerts ML (1982) Morphological changes in the proximal area of the rat’s hair follicle during early catagen. Arch Dermatol Res 272:79–92

    PubMed  Google Scholar 

  • Dobb MG (1964) Protofibrils in a-keratin. J Mol Biol 10:156

    Google Scholar 

  • Dobb MG, Rogers GE (1968) Electron microscopy of fibrous keratins. In: Crewther WG (ed) Symposium on fibrous proteins, Australia 1967. Butterworths, Australia, pp 267–278

    Google Scholar 

  • Dobb MG, Sikorski J (1969) Fine and ultra-fine structure of mammalian keratin. J Text Inst 60:497–498

    Google Scholar 

  • Dolnick EH (1959) Histogenesis of hair in the mink and its relationship to dermal fetal fat cells. J Morphol 105:1–31

    PubMed  CAS  Google Scholar 

  • Dolnick EH, Lindahl IL, Terrill CE, Reynolds PJ (1969) Cyclophosphamide as a chemical “de-fleecing” agent for sheep. Nature 221:467–468

    PubMed  CAS  Google Scholar 

  • Downes AM, Lyne AG, Clarke WH (1962) Radioautographic studies of the incorporation of [35S]cystine into wool. Aust J Biol Sci 15:713–719

    CAS  Google Scholar 

  • Downes AM, Sharry LF, Rogers GE (1963) Separate synthesis of fibrillar and matrix proteins in the formation of keratin. Nature 199:1059–1061

    PubMed  CAS  Google Scholar 

  • Downes AM, Chapman RE, Till AR, Wilson PA (1966a) Proliferative cycle and fate of cell nuclei in wool follicles. Nature 212:477–479

    CAS  Google Scholar 

  • Downes AM, Ferguson KA, Gillespie JM, Harrap BS (1966b) A study of the proteins of the wool follicle. Aust J Biol Sci 19:319–333

    CAS  Google Scholar 

  • Downes AM, Langlands JP, Reis PJ (1975) Effects of sulphur supplementation on sheep and cattle production. In: McLachlan KD (ed) Sulphur in Australasian agriculture. Sydney University Press, Sydney, pp 117–124

    Google Scholar 

  • Downes AM, Reis PJ, Hemsley JA (1976) Proteins and amino acids for wool growth. In: Sutherland TM, McWilliam JR, Leng RA (eds) From plant to animal protein. (Reviews in Rural Science Number II) University of New England, Publishing Unit, Armidale, pp 143–148

    Google Scholar 

  • Dry FW (1926) The coat of the mouse (Mus musculus). J Genet 16:287–340

    Google Scholar 

  • Dry FW (1933a) The pre-natal check in the birth-coat of the New Zealand Romney lamb. J Text Inst 24:T161–166

    Google Scholar 

  • Dry FW (1933b) Hairy fibres of the Romney sheep. NZ J Agric 46:10–22,141–153, 279–288

    Google Scholar 

  • Dry FW (1934) Hairy fibres of the Romney sheep. NZ J Agric 48:331–343

    Google Scholar 

  • Duerden JE (1932) A down pelage in the Ovidae. Nature 130:736–737

    Google Scholar 

  • Duerden JE, Ritchie MIA (1924) The development of the Merino wool fibre. S Afr J Sci 21:480–497

    Google Scholar 

  • Duerden JE, Seale PM (1927) A new type of fibre in the Merino. J Text Inst 18:T265–273

    Google Scholar 

  • Dun RB (1959) The development and growth of vibrissae in the house mouse with particular reference to the time of action of the tabby (Ta) and ragged (Ra) genes. Aust J Biol Sci 12:312–330

    Google Scholar 

  • Durward A, Rudall KM (1949) Studies on hair growth in the rat. J Anat 83:325–335

    PubMed  CAS  Google Scholar 

  • Durward A, Rudall KM (1956) The axial symmetry of animal hairs. In: Crewther WG (ed) Proceedings of the International Wool Textile Research Conference Australia 1955. Commonwealth Scientific and Industrial Research Organization, Australia, Melbourne, vol F, pp 112–119

    Google Scholar 

  • Ebling FJ (1965) Systemic factors affecting the periodicity of hair follicles. In: Lyne AG, Short BF (eds) Biology of the skin and hair growth. Angus and Robertson, Sydney, pp 507–524

    Google Scholar 

  • Ebling FJ (1976) Hair. J Invest Dermatol 67:98–105

    PubMed  CAS  Google Scholar 

  • Ebling FJ (1979) Die hormonale Steuerung des Haarwachstums. In: Orfanos CE (ed) Haar und Haarkrankheiten. Fischer, Stuttgart, pp 269–295

    Google Scholar 

  • Ebling FJ, Haie PA (1983) Hormones and hair growth. In: Goldsmith LA (ed) Biochemistry and physiology of the skin. Oxford University Press, New York, pp 522–552

    Google Scholar 

  • Ebling FJ, Johnson E (1959) Hair growth and its relation to vascular supply in rotated skin grafts and transposed flaps in the albino rat. J Embryol Exp Morphol 7:417–430

    PubMed  CAS  Google Scholar 

  • Ebling FJ, Johnson E (1961) Systemic influence on activity of hair follicles in skin homografts. J Embryol Exp Morphol 9:285–293

    PubMed  CAS  Google Scholar 

  • Ebling FJ, Rook A (1968) Hair. In: Rook A, Wilkinson DS, Ebling FJG (eds) Textbook of dermatology. Blackwell Scientific, Oxford, pp 1355–1425

    Google Scholar 

  • Ellenberger W (1906) Handbuch der vergleichenden mikroskopischen Anatomie der Haustiere, vol 1. Parey, Berlin

    Google Scholar 

  • Ellis WJ (1948) Method of obtaining wool roots for histochemical examination. Nature 162:957

    PubMed  CAS  Google Scholar 

  • Epstein WL, Maibach HI (1969) Cell proliferation and movement in human hair bulbs. In: Montagna W, Dobson RL (eds) Hair growth. Pergamon, Oxford, pp 83–97 (Advances in biology of skin, vol IX)

    Google Scholar 

  • Farrant JL, Rees ALG, Mercer EH (1947) Structure of fibrous keratin. Nature 159:535–536

    PubMed  CAS  Google Scholar 

  • Ferguson KA, Wallace ALC, Lindner HR (1965) Hormonal regulation of wool growth. In: Lyne AG, Short BF (eds) Biology of the skin and hair growth. Angus and Robertson, Sydney, pp 655–677

    Google Scholar 

  • Filshie BK, Rogers GE (1961) The fine structure of a-keratin. J Molec Biol 3:784–786

    PubMed  CAS  Google Scholar 

  • Flesch P (1963) Inhibition of keratinizing structures by systemic drugs. Pharmacol Rev 15:653–671

    PubMed  CAS  Google Scholar 

  • Fletcher JC, Buchanan JH (1977) The basis of protein chemistry. In: Asquith RS (ed) Chemistry of natural protein fibers. Plenum, New York, pp 1–52

    Google Scholar 

  • Forslind B (1971) Electron microscopic and autoradiographic study of S35-L-cystine incorporation in mouse hair follicles. Acta Derm Venereol (Stockh) 51:9–15

    CAS  Google Scholar 

  • Forslind B, Lindstrom B, Swanbeck G (1971) Microradiographic and autoradiographic studies of keratin formation in human hair. Acta Derm Venereol (Stockh) 51:81–88

    CAS  Google Scholar 

  • Fowler EH, Calhoun ML (1964) The microscopic anatomy of developing fetal pig skin. Am J Vet Res 25:156–164

    PubMed  CAS  Google Scholar 

  • Fraser AS (1951) Genetic and developmental analysis of the TV-type strains of the Romney Marsh breed of sheep. Thesis, University of Edinburgh, Edinburgh

    Google Scholar 

  • Fraser AS (1954) Development of the skin follicle population in Merino sheep. Aust J Agric Res 5:737–744

    Google Scholar 

  • Fraser AS, Hamada MKO (1952) Observations on the birthcoats and skins of several breeds and crosses of British sheep. Proc R Soc Edinburgh B64:462–477

    Google Scholar 

  • Fraser AS, Short BF (1960) The biology of the fleece. Animal Research Laboratories Technical Paper No 3, Commonwealth Scientific and Industrial Research Organziation, Australia, Melbourne

    Google Scholar 

  • Fraser AS, Ross JM, Wright GM (1954) Development of the fibre population in TV-type sheep. Aust J Agric Res 5:490–502

    Google Scholar 

  • Fraser IEB (1964) Studies on the follicle bulb of fibres. I. Mitotic and cellular segmentation in the wool follicle with reference to ortho- and parasegmentation. Aust J Biol Sci 17:521–531

    Google Scholar 

  • Fraser IEB (1965) Cellular proliferation in the wool follicle bulb. In: Lyne AG, Short BF (eds) Biology of the skin and hair growth. Angus and Robertson, Sydney, pp 427–445

    Google Scholar 

  • Fraser IEB (1969a) Proteins of keratin and their synthesis. I. Proteins of prekeratin and keratin. Aust J Biol Sci 22:213–229

    PubMed  CAS  Google Scholar 

  • Fraser IEB (1969b) Proteins of keratin and their synthesis. II. Incorporation of [35S]cystine into prekeratin and keratin proteins. Aust J Biol Sci 22:231–238

    PubMed  CAS  Google Scholar 

  • Fraser RDB, MacRae TP (1956) The distribution of ortho- and paracortical cells in wool and mohair. Text Res J 26:618–619

    Google Scholar 

  • Fraser RDB, Rogers GE (1953) Microscopic observations of the alkaline-thioglycollate extraction of wool. Biochim Biophys Acta 12:484–485

    PubMed  CAS  Google Scholar 

  • Fraser RDB, Rogers GE (1955) The bilateral structure of wool cortex and its relation to crimp. Aust J Biol Sci 8:288–299

    Google Scholar 

  • Fraser RDB, Rogers GE (1956) The bilateral structure of wool cortex. In: Crewther WG (ed) Proceedings of the International Wool Textile Research Conference Australia 1955. Commonwealth Scientific and Industrial Research Organization, Australia, Melbourne, vol F, pp 151–155

    Google Scholar 

  • Fraser RDB, MacRae TP, Rogers GE (1959) Structure of a-keratin. Nature 183:592–594

    PubMed  CAS  Google Scholar 

  • Fräser RDB, MacRae TP, Millward GR, Parry DAD, Suzuki E, Tulloch PA (1971) The molecular structure of keratins. Appl Polym Symp 18:65–83

    Google Scholar 

  • Fraser RDB, MacRae TP, Rogers GE (1972) Keratins. Their composition, structure and biosynthesis. Thomas, Springfield Fraser RDB, Gillespie JM, MacRae TP (1973) Tyrosine-rich proteins in keratins. Comp Bio-chem Physiol 44B:943–947

    Google Scholar 

  • Fraser RDB, Jones LN, MacRae TP, Suzuki E, Tulloch PA (1980) The fine structure of the wool fibre. In: Anon (ed) Proceedings, 6th Quinquennial International Wool Textile Research Conference Pretoria 1980. Council for Scientific and Industrial Research, Pretoria, vol 1, pp 1–33

    Google Scholar 

  • Frater R (1966) Comparison of similar protein components isolated from wool and wool roots. Aust J Biol Sci 19:699–710

    CAS  Google Scholar 

  • Frater R (1983) Inhibition of growth of hair follicles by a lectin-like substance from rat skin. Aust J Biol Sci 36:411–418

    PubMed  CAS  Google Scholar 

  • Freedberg IM (1970) Hair root cell-free protein synthesis. J Invest Dermatol 54:108–120

    PubMed  CAS  Google Scholar 

  • Frölich G, Spöttel W, Tänzer E (1929) Technologie der Textilfasern, vol 8/1. Wollkunde. Springer, Berlin

    Google Scholar 

  • Geary JR (1952) Effect of roentgen rays during various phases of the hair cycle of the albino rat. Am J Anat 91:51–105

    PubMed  Google Scholar 

  • Geissinger HD, Abandowitz HM, Josefowicz WJ (1976) Correlative light optical and scanning electron microscopy of single hair shafts. Mikroskopie 31:279–286

    PubMed  CAS  Google Scholar 

  • Gemmell RT, Chapman RE (1971) Formation and breakdown of the inner root sheath and features of the pilary canal epithelium in the wool follicle. J Ultrastruct Res 36:355–366

    PubMed  CAS  Google Scholar 

  • Gibbs HF (1938) A study of the development of the skin and hair of the Australian opossum, Trichosurus vulpecula. Proc Zool Soc Lond 108B:611–648

    Google Scholar 

  • Gillespie JM (1972) Proteins rich in glycine and tyrosine from keratins. Comp Biochem Physiol 41B:723–734

    Google Scholar 

  • Gillespie JM (1983) The structural proteins of hair: isolation, characterization, and regulation of biosynthesis. In: Goldsmith LA (ed) Biochemistry and physiology of the skin, vol I. Oxford University Press, New York, pp 475–510

    Google Scholar 

  • Gillespie JM, Darskus RL (1971) The relation between tyrosine content of various wools and their content of a class of protein rich in tyrosine and glycine. Aust J Biol Sci 24:1189–1197

    PubMed  CAS  Google Scholar 

  • Gillespie JM, Frenkel MJ (1974) The diversity of keratins. Comp Biochem Physiol 47B:339–346

    CAS  Google Scholar 

  • Gillespie JM, Inglis AS (1965a) A comparative study of high-sulphur proteins from a-keratins. Comp Biochem Physiol 15:175–185

    PubMed  CAS  Google Scholar 

  • Gillespie JM, Inglis AS (1965b) High-sulphur proteins as a major cause of variation in sulphurcontent between a-keratins. Nature 207:1293–1294

    CAS  Google Scholar 

  • Gillespie JM, Reis PJ, Schinckel PG (1964) The isolation and properties of some soluble proteins from wool. IX. The proteins in wool of increased sulphur content. Aust J Biol Sci 17:548–560

    CAS  Google Scholar 

  • Goddard DR, Michaelis L (1934) A study on keratin. J Biol Chem 106:605–614

    CAS  Google Scholar 

  • Goddard DR, Michaelis L (1935) Derivatives of keratin. J Biol Chem 112:361–371

    CAS  Google Scholar 

  • Hardy MH (1949) The development of mouse hair in vitro with some observations on pigmentation. J Anat 83:364–384

    PubMed  CAS  Google Scholar 

  • Hardy MH (1952) The histochemistry of hair follicles in the mouse. Am J Anat 90:285–337

    PubMed  CAS  Google Scholar 

  • Hardy MH (1969) The differentiation of hair follicles and hairs in organ culture. In: Montagna W, Dobson RL (eds) Hair growth. Pergamon, Oxford, pp 35–60 (Advances in biology of skin, vol IX)

    Google Scholar 

  • Hardy MH, Lyne AG (1956) The pre-natal development of wool follicles in Merino sheep. Aust J Biol Sci 9:423–441

    Google Scholar 

  • Harkness DR, Bern HA (1957) Radioautographic studies of hair growth in the mouse. Acta Anat 31:35–45

    PubMed  CAS  Google Scholar 

  • Harrap BS, Gillespie JM (1963) A further study of the extraction of reduced proteins from wool. Aust J Biol Sci 16:542–556

    CAS  Google Scholar 

  • Harris M (1954) Handbook of textile fibers. Interscience, New York; Harris Research Laboratories, Washington

    Google Scholar 

  • Hart JS (1956) Seasonal changes in insulation of the fur. Can J Zool 34:53–57

    Google Scholar 

  • Hausman LA (1920) Structural characteristics of the hair of mammals. Am Nat 54:496–523

    Google Scholar 

  • Hausman LA (1924) Further studies of the relationship of the structural characters of mammalian hair. Am Anat (NY) 58:544–557

    Google Scholar 

  • Hausman LA (1930) Recent studies of hair structure relationships. Sci Mon 30:258–277

    Google Scholar 

  • Hayman RH (1965) Hair growth in cattle. In: Lyne AG, Short BF (eds) Biology of the skin and hair growth. Angus and Robertson, Sydney, pp 575–590

    Google Scholar 

  • Hewson R (1958) Moults and winter whitening in the mountain hare (Lepus timidus scoticus). Proc Zool Soc Lond 131:99–108

    Google Scholar 

  • Hojiro O (1972) Fine structure of the mouse hair follicle. J Electron Microsc (Tokyo) 21:127–138

    CAS  Google Scholar 

  • Hollis DE, Lyne AG (1975) Observations on the structure of vibrissa follicles in the marsupial Trichosurus vulpecula, with special reference to keratinization. Aust J Zool 23:9–28

    Google Scholar 

  • Hollis DE, Chapman RE, Panaretto BA, Moore GPM (1983) Morphological changes in the skin and wool fibres of Merino sheep infused with mouse epidermal growth factor. Aust J Biol Sci 36:419–434

    PubMed  CAS  Google Scholar 

  • Horio M, Kondo T (1953) Crimping in wool fibers. Text Res J 23:373–386

    CAS  Google Scholar 

  • Houssay AB, Epper CE, Pazo JH (1965) Neurohormonal regulation of the hair cycle in rats and mice. In: Lyne AG, Short BF (eds) Biology of the skin and hair growth. Angus and Robertson, Sydney, pp 641–654

    Google Scholar 

  • Hrdy D, Baden HP (1973) Biochemical variation of hair keratins in man and non-human primates. Am J Phys Anthropol 39:19–24

    PubMed  CAS  Google Scholar 

  • Hutchinson JCD (1976) Photoperiodic effects on hair and wool growth of domestic animals. In: Tromp SW (ed) Progress in biometeorology Bl. Part II. Swetz and Zeitlinger, Amsterdam, pp 47–60

    Google Scholar 

  • Ippen H (1970) Haarausfall durch Medikamente. Dtsch Med Wochenschr 95:1411–1416

    PubMed  CAS  Google Scholar 

  • Jeffrey GM, Sikorski J, Woods HJ (1956) The microfibrillar structure of keratin fibres. In: Crewther WG (ed) Proceedings of the International Wool Textile Research Conference Australia 1955. Commonwealth Scientific and Industrial Research Organization, Australia, Melbourne, vol F, pp 130–141

    Google Scholar 

  • Johnson DJ, Speakman PT (1965) Ultrafine structure of a-keratin. Nature 205:268

    CAS  Google Scholar 

  • Johnson E (1976) Seasonal moulting cycle in wild mammals. In: Tromp SW (ed) Progress in biometeorology Bl. Part II. Swetz and Zeitlinger, Amsterdam, pp 34–46

    Google Scholar 

  • Jones FW (1921) The external characters of pouch embryos of marsupials. 2. Notoryctes ty-phlops. Trans R Soc S Aust 45:36–39

    Google Scholar 

  • Jones FW (1923) The mammals of South Australia. Part I. Government Printer, Adelaide Jones LN (1975) The isolation and characterization of a-keratin microfibrils. Biochim Biophys Acta 412:91–98

    Google Scholar 

  • Jones LN (1976) Studies on microfibrils from a-keratin. Biochim Biophys Acta 446:515–524

    PubMed  CAS  Google Scholar 

  • Kaplin I J, Whiteley KJ (1978) An electron microscope study of fibril: matrix arrangements in high- and low-crimp wool fibres. Aust J Biol Sci 31:231–240

    PubMed  CAS  Google Scholar 

  • Kassenbeck P (1958) Nouvelle contribution a l’étude de la structure fine des fibres de laine Mérinos. Bull Inst Text Fr 76:7–19

    Google Scholar 

  • Kassenbeck P (1961) Le polymorphisme des fibres kératiniques. In: Structure de la laine. Institut Textile de France, Paris, pp 75–90

    Google Scholar 

  • Krehl WA (1960) Nutritional factors and skin diseases. Vitam Horm 18:121–139

    PubMed  CAS  Google Scholar 

  • Lindbergh J, Philip B, Gralén N (1948) Occurrence of thin membranes in the structure of wool. Nature 162:458–459

    Google Scholar 

  • Lindberg J, Mercer EH, Philip B, Gralén N (1949) The fine histology of the keratin fibers. Text Res J 19:673–678

    CAS  Google Scholar 

  • Lindley H (1977) The chemical composition and structure of wool. In: Asquith RS (ed) Chemistry of natural protein fibers. Plenum, New York, pp 147–191

    Google Scholar 

  • Lindley H, Broad A, Damoglou AP, Darskus RL, Elleman TC, Gillespie JM, Moore CH (1971) The high-sulphur protein fraction of keratins. Appl Polym Symp 18:21–35

    Google Scholar 

  • Ling JK (1965) Hair growth and moulting in the southern elephant seal, Mirounga leonina (Linn). In: Lyne AG, Short BF (eds) Biology of the skin and hair growth. Angus and Robertson, Sydney, pp 525–544

    Google Scholar 

  • Ling JK (1970) Pelage and moulting in wild mammals with special reference to aquatic forms. Q Rev Biol 45:16–54

    PubMed  CAS  Google Scholar 

  • Ling JK, Thomas CDB (1967) The skin and hair of the southern elephant seal, Mirounga leonine (L) II. Pre-natal and early post-natal development and moulting. Aust J Zool 15:349–365

    Google Scholar 

  • Lochte T (1938) Atlas der menschlichen und tierischen Haare. Schops, Leipzig

    Google Scholar 

  • Lovell JE, Getty R (1957) The hair follicle, epidermis, dermis, and skin glands of the dog. Am J Vet Res 18:873–885

    PubMed  CAS  Google Scholar 

  • Lundgren HP, Ward WH (1963) The keratins. In: Borasky R (ed) Ultrastructure of protein fibers. Academic, London, pp 39–122

    Google Scholar 

  • Lyman CP (1943) Control of coat color in the varying hare, Lepus americanus. Bull Mus Comp Zool Harv Univ 93:393–461

    Google Scholar 

  • Lyne AG (1957) The development and replacement of pelage hairs in the bandicoot Perameles nasuta Geoffroy (Marsupialia: Peramelidae). Aust J Biol Sci 10:197–216

    Google Scholar 

  • Lyne AG (1959) The systematic and adaptive significance of the vibrissae in the Marsupialia. Proc Zool Soc Lond 133:79–133

    Google Scholar 

  • Lyne AG (1965) The hair cycle in the chinchilla. In: Lyne AG, Short BF (eds) Biology of the skin and hair growth. Angus and Robertson, Sydney, pp 467–489

    Google Scholar 

  • Lyne AG (1966) The development of hair follicles. Aust J Sci 28:370–377

    Google Scholar 

  • Lyne AG (1970) The development of hair follicles in the marsupial Trichosurus vulpecula. Aust J Biol Sci 23:1241–1253

    PubMed  CAS  Google Scholar 

  • Lyne AG, Heideman MJ (1959) The pre-natal development of skin and hair in cattle (Bos Taurus L.). Aust J Biol Sci 12:72–95

    Google Scholar 

  • Lyne AG, Heideman MJ (1960) The pre-natal development of skin and hair in cattle. II. Bos in-dicus L. x B. taurus L. Aust J Biol Sci 13:584–599

    Google Scholar 

  • Lyne AG, McMahon TS (1951) Observations on the surface structure of the hairs of Tasmanian monotremes and marsupials. Pap Proc R Soc Tasm 1950:71–84

    Google Scholar 

  • Mann SJ (1962) Prenatal formation of hair follicle types. Anat Rec 144:135–141

    Google Scholar 

  • Margolena LA (1959) Skin and hair follicle development in dairy goats. Va J Sci 10:33–47

    Google Scholar 

  • Marshall RC (1981) Analysis of the proteins from single wool fibers by two-dimensional poly-acrylamide gel electrophoresis. Text Res J 51:106–108

    CAS  Google Scholar 

  • Marshall RC, Gillespie JM (1976) High sulphur proteins from a-keratins. II. Isolation and partial characterization of purified components from mouse hair. Aust J Biol Sci 29:11–20

    PubMed  CAS  Google Scholar 

  • Marshall RC, Gillespie JM, Inglis AS, Frenkel MJ (1980) High-tyrosine proteins of wool, heterogeneity and biosynthetic regulation. In: Anon (ed) Proceedings, 6th Quinquennial International Wool Textile Research Conference Pretoria 1980. Council for Scientific and Industrial Research, Pretoria, vol 2, pp 147–158

    Google Scholar 

  • Mayer MVC (1952) The hair of Californian mammals with keys to the dorsal guard hair of Californian mammals. Am Midi Nat 48:480–512

    Google Scholar 

  • Melaragno HP, Montagna W (1953) The tactile hair follicles in the mouse. Anat Rec 115:129–150

    PubMed  CAS  Google Scholar 

  • Menkart J, Coe AB (1958) Microscopic studies of the structure and composition of keratin fibers. Text Res J 28:218–226

    CAS  Google Scholar 

  • Mercer EH (1953) The heterogeneity of the keratin fibers. Text Res J 23:388–397

    CAS  Google Scholar 

  • Mercer EH (1961) Keratin and keratinization. Pergamon, Oxford New York Millward GR (1969) Cellulose contamination: a possible source of error in the interpretation of previous experimental evidence for the a-keratin protofibril. J Cell Biol 42:317–320

    Google Scholar 

  • Mohn MP (1958) The effects of different hormonal states on the growth of hair in rats. In: Montagna W, Ellis RA (eds) The biology of hair growth. Academic, London, pp 335–398

    Google Scholar 

  • Montagna W (1956) The structure and function of skin. Academic, London

    Google Scholar 

  • Montagna W (1962) The structure and function of skin, 2nd edn. Academic, London

    Google Scholar 

  • Montagna W, Ellis RA (1958) The biology of hair growth. Academic, London

    Google Scholar 

  • Montagna W, Parakkal PF (1974) The structure and function of skin, 3rd edn. Academic, London

    Google Scholar 

  • Moore GPM, Panaretto BA, Robertson D (1981) Epidermal growth factor causes shedding of the fleece of Merino sheep. Search 12:128–129

    Google Scholar 

  • Nagorcka BN, Mooney JR (1982) The role of a reaction-diffusion system in the formation of hair fibres. J Theor Biol 94:575–608

    Google Scholar 

  • Nakai T (1964) A study of the ultrastruetural localization of hair keratin synthesis utilizing electron microscopic autoradiography in a magnetic field. J Cell Biol 21:63–74

    PubMed  CAS  Google Scholar 

  • Narayan S (1960) Skin follicle types, ratios, and population densities in Rajasthan sheep breeds. Aust J Agric Res 11:408–426

    Google Scholar 

  • Nathusius-Königsborn (1866) Das Wollhaar des Schafes in histologischer und technischer Beziehung mit vergleichender Berücksichtigung anderer Haare und der Haut. Wiegandt and Hempel, Berlin

    Google Scholar 

  • Noback CR (1951) Morphology and phylogeny of hair. Ann NY Acad Sci 53:476–491

    PubMed  CAS  Google Scholar 

  • Obst JM, Evans JV (1970) Genotype-envirsonment interactions in lamb mortality with particular reference to birthcoat and haemoglobin type. Proc Aust Soc Anim Prod 8:149–153

    Google Scholar 

  • O’Donnell IJ, Thompson EOP (1964) Studies on reduced wool. IV. The isolation of a major component. Aust J Biol Sci 17:973–989

    Google Scholar 

  • Orwin DFG (1971) Cell differentiation in the lower outer sheath of the Romney wool follicle: a companion cell layer. Aust J Biol Sci 24:989–999

    PubMed  CAS  Google Scholar 

  • Orwin DFG (1979a) The cytology and cytochemistry of the wool follicle. Int Rev Cytol 60:331–374

    PubMed  CAS  Google Scholar 

  • Orwin DFG (1979b) Cytological studies on keratin fibres. In: Parry DAD, Creamer LK (eds) Fibrous proteins: scientific, industrial and medical aspects, vol 1. Academic, London, pp 271–297

    Google Scholar 

  • Panaretto BA (1979) Effects of light on cyclic activity of wool follicles and possible relationships to changes in the pelage of other mammals. In: Black JL, Reis PJ (eds) Physiological and environmental limitations to wool growth. University of New England Publishing Unit, Armidale, pp 327–336

    Google Scholar 

  • Panaretto BA, Chapman RE, Downes AM, Reis PJ, Wallace ALC (1975) Some effects of three glucocorticoid analogues on wool growth and their efficacy as defleecing agents in sheep. Aust J Exp Agric Anim Husb 15:193–202

    CAS  Google Scholar 

  • Parakkal PF (1969a) Ultrastruetural changes of the basal lamina during the hair growth cycle. J Cell Biol 40:561–564

    PubMed  CAS  Google Scholar 

  • Parakkal PF (1969b) The fine structure of anagen hair follicle of the mouse. In: Montagna W, Dobson RL (eds) Hair growth. Pergamon, Oxford, pp 441–469 (Advances in biology of skin, vol IX)

    Google Scholar 

  • Parakkal PF (1969c) Role of macrophages in collagen resorption during hair growth cycle. J Ultrastruct Res 29:210–217

    PubMed  CAS  Google Scholar 

  • Parakkal PF (1970) Morphogenesis of the hair follicle during catagen. Z Zellforsch Mikrosk Anat 107:174–186

    PubMed  CAS  Google Scholar 

  • Parakkal PF (1979) Katagen-und Telogenphase. In: Orfanos CE (ed) Haar und Haarkrankheiten. Fischer, Stuttgart, pp 77–93

    Google Scholar 

  • Parakkal PF, Matoltsy AG (1964) A study of the differentiation products of the hair follicle cells with the electron microscope. J Invest Dermatol 43:23–34

    Google Scholar 

  • Parry DAD (1979) Determination of structural information from the amino acid sequences of fibrous proteins. In: Parry DAD, Creamer LK (eds) Fibrous proteins: scientific, industrial and medical aspects, vol 1. Academic, London, pp 393–427

    Google Scholar 

  • Perkins EM, Smith AA, Ford DM (1969) A study of hair groupings in primates. In: Montagna W, Dobson RL (eds) Hair growth. Pergamon, Oxford, pp 357–367 (Advances in biology of skin, vol IX)

    Google Scholar 

  • Pinkus F (1904) Über Hautsinnesorgane neben dem menschlichen Haar (Haarscheiben) und ihre vergleichend-anatomische Bedeutung. Arch Mikrosk Anat Entwicklungsmech 65:121–179

    Google Scholar 

  • Pinkus H, Iwasaki T, Mishima Y (1981) Outer root sheath keratinization in anagen and catagen of the mammalian hair follicle. A seventh distinct type of keratinization in the hair follicle: trichilemmal keratinization. J Anat 133:19–35

    PubMed  CAS  Google Scholar 

  • Pinter AJ (1968) Hair growth responses to nutrition and photoperiod in the vole, Microtus montanus. Am J Physiol 215:828–831

    PubMed  CAS  Google Scholar 

  • Pocock RI (1914) On the facial vibrissae of mammalia. Proc Zool Soc Lond 1914:889–912

    Google Scholar 

  • Poulton EB (1894) The structure of the bill and hairs of Ornithorhynchus paradoxus; with a discussion of the homologies and origin of mammalian hair. Q J Microsc Sci 36:143–190

    Google Scholar 

  • Priestley GC, Rudall KM (1965) Modification in the Huxley layer associated with changes in fibre diameter and output. In: Lyne AG, Short BF (eds) Biology of the skin and hair growth. Angus and Robertson, Sydney, pp 165–170

    Google Scholar 

  • Purser DB (1979) Effects of minerals upon wool growth. In: Black JL, Reis PJ (eds) Physiological and environmental limitations to wool growth. University of New England Publishing Unit, Armidale, pp 243–255

    Google Scholar 

  • Reis PJ (1979) Effects of amino acids on the growth and properties of wool. In: Black JL, Reis PJ (eds) Physiological and environmental limitations to wool growth. University of New England Publishing Unit, Armidale, pp 223–242

    Google Scholar 

  • Reis PJ, Chapman RE (1974) Changes in wool growth and the skin of Merino sheep following administration of cyclophosphamide. Aust J Agric Res 25:931–943

    CAS  Google Scholar 

  • Reis PJ, Schinckel PG (1963) Some effects of sulphur-containing amino acids on the growth and composition of wool. Aust J Biol Sci 16:218–230

    CAS  Google Scholar 

  • Reis PJ, Tunks DA, Chapman RE (1975) Effects of mimosine, a potential chemical defleecing agent, on wool growth and the skin of sheep. Aust J Biol Sci 28:69–84

    PubMed  CAS  Google Scholar 

  • Rendel JM (1954) Inheritance of birthcoat in a flock of improved Welsh Mountain sheep. Aust J Agric Res 5:297–304

    Google Scholar 

  • Reumuth H (1954) Die Wollkunde. 1. Mikro-Morphologie, -Anatomie und Histologie des Wollhaares. In: Doehner H (ed) Handbuch der Schafzucht und Schafhaltung, vol 4. Die Leistungen des Schafes. Parey, Berlin, pp 15–55

    Google Scholar 

  • Rhodin JAG, Reith EJ (1962) Ultrastructure of keratin in oral mucosa, skin, esophagus, claw, and hair. In: Butcher EO, Sognnaes RF (eds) Fundamentals of keratinization. American Association for the Advancement of Science, Washington, pp 61–94 (Publication no 70)

    Google Scholar 

  • Rogers GE (1957) Electron microscope observations on the glassy layer of the hair follicle. Exp Cell Res 13:521–528

    PubMed  CAS  Google Scholar 

  • Rogers GE (1959a) Electron microscope studies of hair and wool. Ann NY Acad Sci 83:378–399

    PubMed  CAS  Google Scholar 

  • Rogers GE (1959b) Electron microscopy of wool. J Ultrastruct Res 2:309–330

    PubMed  CAS  Google Scholar 

  • Rogers GE (1959c) Newer findings on the enzymes and proteins of hair follicles. Ann NY Acad Sci 83:408–428

    PubMed  CAS  Google Scholar 

  • Rogers GE (1964) Structural and biochemical features of the hair follicle. In: Montagna W, Lobitz WC (eds) The epidermis. Academic, London, pp 179–236

    Google Scholar 

  • Rogers GE (1969) The structure and biochemistry of keratin. In: Bittar EE, Bittar N (eds) The biological basis of medicine, vol 6. Academic, London, pp 21–57

    Google Scholar 

  • Rogers GE (1983) The occurrence of citrulline in structural proteins of the hair follicles. In: Goldsmith LA (ed) Biochemistry and physiology of the skin, vol I. Oxford University Press, New York, pp 511–521

    Google Scholar 

  • Rogers GE, Clarke RM (1965a) Keratin protofilaments and ribosomes from hair follicles. Nature 205:77–78

    PubMed  CAS  Google Scholar 

  • Rogers GE, Clarke RM (1965b) An approach to the investigation of protein biosynthesis in hair follicles. In: Lyne AG, Short BF (eds) Biology of the skin and hair growth. Angus and Robertson, Sydney, pp 329–343

    Google Scholar 

  • Roth SI (1965) The cytology of the murine resting (telogen) hair follicle. In: Lyne AG, Short BF (eds) Biology of the skin and hair growth. Angus and Robertson, Sydney, pp 233–250

    Google Scholar 

  • Roth SI, Clark WH (1964) Ultrastructural evidence related to the mechanism of keratin synthesis. In: Montagna W, Lobitz WC (eds) The epidermis. Academic, London, pp 303–337

    Google Scholar 

  • Roth SI, Helwig EB (1964) The cytology of the cuticle of the cortex, the cortex, and the medulla of the mouse hair. J Ultrastruct Res 11:52–67

    PubMed  CAS  Google Scholar 

  • Rothschild M (1942) Change of pelage in the stoat. Nature 149:78

    Google Scholar 

  • Rougeot J, Thébault R-G (1970) Utilisation de la cyclophosphamide comme substance dépilatoire pour la récolte des poils du Lapin Angora. Ann Zootech 19:229–234

    Google Scholar 

  • Rudall KM (1956) The size and shape of the papilla in wool follicles. In: Crewther WG (ed) Proceedings of the International Wool Textile Research Conference Australia 1955. Commonwealth Scientific and Industrial Research Organization, Australia, Melbourne, vol F, pp 9–25

    Google Scholar 

  • Ryder ML (1958a) Investigations into the distribution of thiol groups in the skin follicles of mice and sheep and the entry of labelled sulphur compounds. Proc R Soc Edingburgh Sect B 67:65–82

    Google Scholar 

  • Ryder ML (1958b) Nutritional factors influencing hair and wool growth. In: Montagna W, Ellis RA (eds) The biology of hair growth. Academic, London, pp 305–334

    Google Scholar 

  • Ryder ML (1960) A study of the coat of the mouflon Ovis musimon with special reference to seasonal change. Proc Zool Soc Lond 135:387–408

    Google Scholar 

  • Ryder ML (1966) Coat structure and seasonal shedding in goats. Anim Prod 8:289–302

    Google Scholar 

  • Ryder ML, Stephenson SK (1968) Wool growth. Academic, London

    Google Scholar 

  • Scheffer VB (1962) Pelage and surface topography of the northern fur seal. North Am Fauna 64

    Google Scholar 

  • Schinckel PG (1953) Follicle development in the Australian Merino. Nature 171:310–311

    PubMed  CAS  Google Scholar 

  • Schinckel PG (1955) Inheritance of birthcoats in a strain of Merino sheep. Aust J Agric Res 6:595–607

    Google Scholar 

  • Schinckel PG (1958) The relationship of lamb birthcoat to adult fleece structure in a strain of Merino sheep. Aust J Agric Res 9:567–578

    Google Scholar 

  • Schinckel PG (1961) Mitotic activity in wool follicle bulbs. Aust J Biol Sci 14:659–676

    Google Scholar 

  • Schneider V (1972) Über die Untersuchung von Haaren mit dem Rasterelektronenmikroskop. Z Rechtsmed 71:94–103

    PubMed  CAS  Google Scholar 

  • Segall A (1918) Über die Entwicklung und den Wechsel der Haare beim Meerschweinchen (Cavia cobaya Schreb). Arch Mikrosk Anat Entwicklungsmech 91 1:218–291

    Google Scholar 

  • Schechter Y, Landau JW, Newcomer VD (1969) Comparative disc electrophoresis of hair kerateines. J Invest Dermatol 52:57–62

    Google Scholar 

  • Short BF (1958) A dominant felting lustre mutant fleece-type in the Australian Merino sheep. Nature 181:1414–1415

    PubMed  CAS  Google Scholar 

  • Short BF, Wilson PA, Schinckel PG (1965) Proliferation of follicle matrix cells in relation to wool growth. In: Lyne AG, Short BF (eds) Biology of the skin and hair growth. Angus and Robertson, Sydney, pp 409–426

    Google Scholar 

  • Sikorski J (1976) Secondary and tertiary structure and physical properties of wool. In: Ziegler K (ed) Proceedings, 5. Internationale Wolltextilforschungskonferenz Aachen 1975. Deutsches Wollforschungsinstitut an der Technischen Hochschule, Aachen, vol 1, pp 103–135

    Google Scholar 

  • Sims RT (1964) The incorporation and fate of H3-tyrosine in the hair cortex of rats observed by radioautography. J Cell Biol 22:403–412

    PubMed  CAS  Google Scholar 

  • Slee J (1965) Seasonal patterns of moulting in Wiltshire Horn sheep. In: Lyne AG, Short BF (eds) Biology of the skin and hair growth. Angus and Robertson, Sydney, pp 545–563

    Google Scholar 

  • Smith F (1890) The histology of the skin of the elephant. J Anat Physiol 24 (New series 4):493–503

    PubMed  CAS  Google Scholar 

  • Smoliar V (1966) Effects of ionizing radiation on the hair-bulbs of young rats. Int J Radiat Biol 11:21–26

    CAS  Google Scholar 

  • Spearman RIC (1970) The epidermis and its keratinisation in the African elephant (Loxodonta africand). Zool Afr 5:327–338

    Google Scholar 

  • Spencer B, Sweet GF (1899) The structure and development of the hairs of monotremes and marsupials. Part 1. Monotremes. Q J Microsc Sci 41:549–588

    Google Scholar 

  • Steinert PM, Rogers GE (1971a) Protein biosynthesis in cell-free systems prepared from hair follicle tissue of guinea pigs. Biochim Biophys Acta 232:556–572

    PubMed  CAS  Google Scholar 

  • Steinert PM, Rogers GE (1971b) The synthesis of hair keratin proteins in vitro. Biochim Biophys Acta 238:150–155

    PubMed  CAS  Google Scholar 

  • Steinert PM, Rogers GE (1973) In vitro studies on the synthesis of guinea pig hair keratin proteins. Biochim Biophys Acta 312:403–412

    PubMed  CAS  Google Scholar 

  • Stephenson SK (1956) Some aspects of gene dosage in TV-type sheep. Aust J Agric Res 7:447–468

    Google Scholar 

  • Straile WE (1960) Sensory hair follicles in mammalian skin: the tylotrich follicle. Am J Anat 106:133–148

    Google Scholar 

  • Straile WE (1962) Possible functions of the external root sheath during growth of the hair follicle. J Exp Zool 150:207–223

    PubMed  CAS  Google Scholar 

  • Straile WE (1965) Root sheath — dermal papilla relationships and the control of hair growth. In: Lyne AG, Short BF (eds) Biology of the skin and hair growth. Angus and Robertson, Sydney, pp 35–57

    Google Scholar 

  • Straile WE, Chase HB, Arsenault C (1961) Growth and differentiation of hair follicles between periods of activity and quiescence. J Exp Zool 148:205–221

    PubMed  CAS  Google Scholar 

  • Strickland JH, Calhoun ML (1963) The integumentary system of the cat. Am J Vet Res 24:1018–1029

    PubMed  CAS  Google Scholar 

  • Sugiyama S, Takahashi M, Kamimura M (1976) The ultrastructure of the hair follicles in early and late catagen, with special reference to the alteration of the junctional structure between the dermal papilla and epithelial component. J Ultrastruct Res 54:359–373

    PubMed  CAS  Google Scholar 

  • Swanbeck G (1964) A theory for the structure of a-keratin. In: Montagna W, Lobitz WC (eds) The epidermis. Academic, London, pp 339–350

    Google Scholar 

  • Swart LS, Joubert FJ, Parris D (1976) Homology in the amino acid sequence of the high-sulphur proteins from keratins. In: Ziegler K (ed) Proceedings, 5. Internationale Wolltextil-Forschungskonferenz Aachen 1975. Deutsches Wollforschungsinstitut an der Technischen Hochschule, Aachen, vol 2, pp 254–263

    Google Scholar 

  • Swift JA (1969) The electron histochemical demonstration of cystine-containing proteins in the guinea pig hair follicle. Histochemie 19:88–98

    PubMed  CAS  Google Scholar 

  • Swift JA (1977) The histology of keratin fibers. In: Asquith RS (ed) Chemistry of natural protein fibers. Plenum, New York, pp 81–146

    Google Scholar 

  • Swift JA, Bews B (1974) The chemistry of human hair cuticle. I. A new method for the physical isolation of cuticle. J Soc Cosmet Chem 25:13–22

    CAS  Google Scholar 

  • Tänzer E (1926) Haut und Haar beim Karakul im rassenanalytischen Vergleich. Thielle, Halle (Saale)

    Google Scholar 

  • Toldt K (1910) Über eine beachtenswerte Haarsorte und über das Haarformensystem der Säugetiere. Ann Naturhist Mus, Wien 24:195–265

    Google Scholar 

  • Toldt K (1935) Aufbau und natürliche Färbung des Haarkleides der Wildsäugetiere. Deutsche Gesellschaft für Kleintier- und Pelztierzucht, Leipzig

    Google Scholar 

  • Underwood EJ (1977) Trace elements in human and animal nutrition, 4th edn. Academic, London

    Google Scholar 

  • Uno H, Adachi K, Montagna W (1969) Morphological and biochemical studies of hair follicle in common baldness of stump-tailed macaque (Macaca speciosa). In: Montagna W, Dobson RL (eds) Hair growth. Pergamon, Oxford, pp 221–245 (Advances in biology of skin, vol IX)

    Google Scholar 

  • Van Scott EJ, Ekel TM, Auerbach R (1963) Determinants of rate and kinetics of cell division in scalp hair. J Invest Dermatol 41:269–273

    Google Scholar 

  • Von Bergen W, Krauss W (1949) Textile fiber atlas. Textile Book, New York

    Google Scholar 

  • Vsevolodov EB (1964) Izuchenie morfogeneza volosa s primeneniem elektronnogo mikroskopa. Izv Akad Nauk Kaz SSR, Ser Biol 6:70–77

    Google Scholar 

  • Walker EP (1964) Mammals of the world. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Wallace ALC (1979) The effect of hormones on wool growth. In: Black JL, Reis PJ (eds) Physiological and environmental limitations to wool growth. University of New England Publishing Unit, Armidale, pp 257–268

    Google Scholar 

  • Walton GS (1965) Abnormal hair growth in domestic animals. In: Rook AJ, and pathology of the skin. Blackwell Scientific, Oxford, pp 211–221

    Google Scholar 

  • Webb AJ, Calhoun ML (1954) The microscopic anatomy of the skin of mongrel dogs. Am J Vet Res 15:274–280

    PubMed  CAS  Google Scholar 

  • Whiteley KJ, Kaplin IJ (1977) The comparative arrangement of microfibrils in ortho-, meso-, and paracortical cells of Merino-wool fibres. J Text Inst 68:384–386

    Google Scholar 

  • Wildman AB (1932) Coat and fibre development of some British sheep. Proc Zool Soc Lond 1:257–285

    Google Scholar 

  • Wildman AB (1954) The microscopy of animal textile fibres. Wool Industries Research Association, Leeds

    Google Scholar 

  • Wilkinson BR (1970) Keratin biosynthesis. I. Isolation and characterization of polysomes from wool roots. Aust J Biol Sci 23:127–138

    CAS  Google Scholar 

  • Wilkinson BR (1971) Cell-free biosynthesis of wool keratin proteins. Biochem J 125:371–373

    PubMed  CAS  Google Scholar 

  • Williams CS (1938) Aids to the identification of mole and shrew hairs with general comments on hair structure and hair determination. J Wildl Manage 2:239–250

    Google Scholar 

  • Wilson LO (1964) Lamb birthcoat. Nat Wool Grow 54:12–13

    Google Scholar 

  • Wolbach SB (1951) The hair cycle of the mouse and its importance in the study of sequences of experimental carcinogenesis. Ann NY Acad Sci 53:517–536

    PubMed  CAS  Google Scholar 

  • Wright PL (1942) A correlation between spring molt and spring changes in the sexual cycle of the weasel. J Exp Zool 91:103–110

    Google Scholar 

  • Zahn H, Biela M (1968) Tyrosinreiche Proteine im Ameisensäure-Extrakt von reduzierter Wolle. Eur J Biochem 5:567–573

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chapman, R.E. (1990). Non-human Hair. In: Orfanos, C.E., Happle, R. (eds) Hair and Hair Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74612-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74612-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74614-7

  • Online ISBN: 978-3-642-74612-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics